Synthesis and photophysics of a porphyrin-fullerene dyad assembled through Watson-Crick hydrogen bonding.

A novel porphyrin-fullerene dyad assembled through Watson-Crick hydrogen bonds is described; this system undergoes photoinduced electron transfer upon irradiation with visible light to produce a charge separated state that is substantially longer lived than that of previous dyads of this type.

[1]  Helge Lemmetyinen,et al.  An Extremely Small Reorganization Energy of Electron Transfer in Porphyrin−Fullerene Dyad , 2001 .

[2]  B. Wang,et al.  Long-range photoinduced electron transfer in an associated but noncovalently linked photosynthetic model system , 1993 .

[3]  Michael D. Ward,et al.  Photo-induced electron and energy transfer in non-covalently bonded supramolecular assemblies , 1997 .

[4]  Maurizio Prato,et al.  Excited-State Properties of C60 Fullerene Derivatives , 2000 .

[5]  G. Wiederrecht,et al.  Hydrogen-bond-mediated photoinduced electron-transfer: novel dimethylaniline-anthracene ensembles formed via Watson-Crick base-pairing. , 2001, Journal of the American Chemical Society.

[6]  H. Imahori,et al.  Fullerenes as Novel Acceptors in Photosynthetic Electron Transfer , 1999 .

[7]  D. Guldi,et al.  Fullerene architectures made to order; biomimetic motifs — design and features , 2002 .

[8]  H. Imahori,et al.  A Sequential Photoinduced Electron Relay Accelerated by Fullerene in a Porphyrin‐Pyromellitimide‐C60 Triad , 1997 .

[9]  J. Sessler,et al.  A rigid cytidine-RuII(bpy)3 conjugate. A potential precursor for non-covalent electron transfer modeling , 1996 .

[10]  D. Guldi,et al.  Metallophthalocyanines: Versatile Electron-Donating Building Blocks for Fullerene Dyads , 2004 .

[11]  S. Fukuzumi,et al.  Modulating charge separation and charge recombination dynamics in porphyrin-fullerene linked dyads and triads: Marcus-normal versus inverted region. , 2001, Journal of the American Chemical Society.

[12]  Dirk M Guldi,et al.  Fullerene-porphyrin architectures; photosynthetic antenna and reaction center models. , 2002, Chemical Society reviews.

[13]  J. Brodbelt,et al.  Novel guanosine-cytidine dinucleoside that self-assembles into a trimeric supramolecule. , 2003, Organic letters.

[14]  J. Sessler,et al.  Molecular recognition via base pairing: photoinduced electron transfer in hydrogen-bonded zinc porphyrin-benzoquinone conjugates , 1992 .

[15]  Th. Ackermann,et al.  K. A. Connors: Binding constants — the measurement of molecular complex stability, John Wiley & Sons, New York, Chichester, Brisbane, Toronto, Singapore 1987. 411 Seiten, Preis: £ 64.15 , 1987 .

[16]  D. Rehm,et al.  Kinetics of Fluorescence Quenching by Electron and H‐Atom Transfer , 1970 .

[17]  S. Zimmerman,et al.  Heteroaromatic Modules for Self-Assembly Using Multiple Hydrogen Bonds , 2000 .

[18]  D. Guldi,et al.  Hydrogen bonding interfaces in fullerene*TTF ensembles. , 2003, Journal of the American Chemical Society.

[19]  Francis D'Souza,et al.  Intermolecular and supramolecular photoinduced electron transfer processes of fullerene–porphyrin/phthalocyanine systems , 2004 .

[20]  V. T. Hoang,et al.  Molecular recognition of adenine, adenosine and ATP at the air–water interface by a uracil appended fullerene , 2002 .

[21]  O. Mongin,et al.  Synthesis of nanometer-sized homo- and heteroorganometallic tripodaphyrins , 1997 .

[22]  D. Guldi,et al.  Subphthalocyanines: tuneable molecular scaffolds for intramolecular electron and energy transfer processes. , 2004, Journal of the American Chemical Society.

[23]  T. Moore,et al.  Photochemistry of supramolecular systems containing C60. , 2000, Journal of photochemistry and photobiology. B, Biology.

[24]  Takashi Hayashi,et al.  Molecular modelling of electron transfer systems by noncovalently linked porphyrin–acceptor pairing , 1997 .

[25]  K. A. Connors,et al.  Binding Constants: The Measurement of Molecular Complex Stability , 1987 .