Incorporating the Notion of Relative Importance of Objectives in Evolutionary Multiobjective Optimization

This paper describes the use of decision maker preferences in terms of the relative importance of objectives in evolutionary multiobjective optimization. A mathematical model of the relative importance of objectives and an elicitation algorithm are proposed, and three methods of incorporating explicated preference information are described and applied to standard test problems in an empirical study. The axiomatic model proposed here formalizes the notion of relative importance of objectives as a partial order that supports strict preference, equality of importance, and incomparability between objective pairs. Unlike most approaches, the proposed model does not encode relative importance as a set of real-valued parameters. Instead, the approach provides a functional correspondence between a coherent overall preference with a subset of the Pareto-optimal front. An elicitation algorithm is also provided to assist a human decision maker in constructing a coherent overall preference. Besides elicitation of a priori preference, an interactive facility is also furnished to enable modification of overall preference while the search progresses. Three techniques of integrating explicated preference information into the well-known Non-dominated Sorting Genetic Algorithm (NSGA)-II are also described and validated in a set of empirical investigation. The approach allows a focus on a subset of the Pareto-front. Validations on test problems demonstrate that the preference-based algorithm gained better convergence as the dimensionality of the problems increased.

[1]  Lorraine R. Gardiner,et al.  Interactive Multiple Criteria Procedures: Some Reflections , 1997 .

[2]  Carlos A. Coello Coello,et al.  Handling preferences in evolutionary multiobjective optimization: a survey , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[3]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[4]  Cliff T. Ragsdale,et al.  Grouping Genetic Algorithm for the Blockmodel Problem , 2010, IEEE Transactions on Evolutionary Computation.

[5]  Bernhard Sendhoff,et al.  Adapting Weighted Aggregation for Multiobjective Evolution Strategies , 2001, EMO.

[6]  J. Branke,et al.  Guidance in evolutionary multi-objective optimization , 2001 .

[7]  Bernard Roy,et al.  Preferences and numbers , 2001 .

[8]  Brahim Rekiek,et al.  Assembly planning with an ordering genetic algorithm , 2001 .

[9]  Peter J. Fleming,et al.  Multiobjective optimization and multiple constraint handling with evolutionary algorithms. I. A unified formulation , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[10]  S. Zionts,et al.  An Interactive Programming Method for Solving the Multiple Criteria Problem , 1976 .

[11]  Kay Chen Tan,et al.  A Competitive-Cooperative Coevolutionary Paradigm for Dynamic Multiobjective Optimization , 2009, IEEE Transactions on Evolutionary Computation.

[12]  Kalyanmoy Deb,et al.  Integrating User Preferences into Evolutionary Multi-Objective Optimization , 2005 .

[13]  Eckart Zitzler,et al.  Evolutionary algorithms for multiobjective optimization: methods and applications , 1999 .

[14]  B. Roy,et al.  A Theoretical Framework for Analysing the Notion of Relative Importance of Criteria , 1996 .

[15]  Bernhard Sendhoff,et al.  Incorporation Of Fuzzy Preferences Into Evolutionary Multiobjective Optimization , 2002, GECCO.

[16]  Ian C. Parmee,et al.  Preferences and their application in evolutionary multiobjective optimization , 2002, IEEE Trans. Evol. Comput..

[17]  Kalyanmoy Deb,et al.  Simulated Binary Crossover for Continuous Search Space , 1995, Complex Syst..

[18]  Marco Laumanns,et al.  SPEA2: Improving the Strength Pareto Evolutionary Algorithm For Multiobjective Optimization , 2002 .

[19]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[20]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[21]  Lily Rachmawati,et al.  Multiobjective Evolutionary Algorithm With Controllable Focus on the Knees of the Pareto Front , 2009, IEEE Transactions on Evolutionary Computation.

[22]  Kalyanmoy Deb,et al.  Reference point based multi-objective optimization using evolutionary algorithms , 2006, GECCO.

[23]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[24]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[25]  John B. Kidd,et al.  Decisions with Multiple Objectives—Preferences and Value Tradeoffs , 1977 .

[26]  Marco Laumanns,et al.  Approximating the Knee of an MOP with Stochastic Search Algorithms , 2008, PPSN.

[27]  Alexis Tsoukiàs,et al.  Preference Modelling , 2004, Preferences.

[28]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[29]  Lily Rachmawati,et al.  A Multi-Objective Genetic Algorithm with Controllable Convergence on Knee Regions , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[30]  C. Starmer,et al.  Preference Anomalies, Preference Elicitation and the Discovered Preference Hypothesis , 2005 .

[31]  Günter Rudolph,et al.  Convergence properties of some multi-objective evolutionary algorithms , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[32]  Bernard Roy,et al.  Ranking of suburban line extension projects on the Paris metro system by a multicriteria method , 1982 .

[33]  R. L. Keeney,et al.  Decisions with Multiple Objectives: Preferences and Value Trade-Offs , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[34]  Frank Kursawe,et al.  A Variant of Evolution Strategies for Vector Optimization , 1990, PPSN.

[35]  Kalyanmoy Deb,et al.  Finding Knees in Multi-objective Optimization , 2004, PPSN.

[36]  Hugues Bersini,et al.  Parametrical mechanical design with constraints and preferences: application to a purge valve , 2003 .

[37]  H. Trautmann,et al.  Preference-based Pareto optimization in certain and noisy environments , 2009 .

[38]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[39]  I. C. Parmee,et al.  Genetic algorithm-based multi-objective optimisation and conceptual engineering design , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[40]  Jean Pierre Brans,et al.  PROMETHEE V: MCDM problems with segmentation constraints , 1992 .

[41]  Kalyanmoy Deb,et al.  Evaluating the -Domination Based Multi-Objective Evolutionary Algorithm for a Quick Computation of Pareto-Optimal Solutions , 2005, Evolutionary Computation.

[42]  Bertrand Mareschal,et al.  Prométhée: a new family of outranking methods in multicriteria analysis , 1984 .

[43]  P. Bentley,et al.  Finding Acceptable Pareto-Optimal Solutions using Multiobjective Genetic Algorithms , 2022 .

[44]  Ian C. Parmee,et al.  Use of Preferences for GA-based Multi-objective Optimisation , 1999, GECCO.

[45]  C. Coello,et al.  Years of Evolutionary Multi-Objective Optimization : What Has Been Done and What Remains To Be Done , 2006 .

[46]  Bernard Roy,et al.  Classement et choix en présence de points de vue multiples , 1968 .

[47]  E. F. Khor,et al.  An Evolutionary Algorithm with Advanced Goal and Priority Specification for Multi-objective Optimization , 2011, J. Artif. Intell. Res..

[48]  Garrison W. Greenwood,et al.  Fitness Functions for Multiple Objective Optimization Problems: Combining Preferences with Pareto Rankings , 1996, FOGA.

[49]  Thomas L. Saaty,et al.  Multicriteria Decision Making: The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation , 1990 .

[50]  David Corne,et al.  The Pareto archived evolution strategy: a new baseline algorithm for Pareto multiobjective optimisation , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[51]  Gary B. Lamont,et al.  Multiobjective evolutionary algorithms: classifications, analyses, and new innovations , 1999 .

[52]  Peter J. Fleming,et al.  An Overview of Evolutionary Algorithms in Multiobjective Optimization , 1995, Evolutionary Computation.

[53]  K. Deb Solving goal programming problems using multi-objective genetic algorithms , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[54]  S. Zionts,et al.  An Interactive Multiple Objective Linear Programming Method for a Class of Underlying Nonlinear Utility Functions , 1983 .

[55]  Eckart Zitzler,et al.  Indicator-Based Selection in Multiobjective Search , 2004, PPSN.

[56]  Christine L. Mumford Simple Population Replacement Strategies for a Steady-State Multi-objective Evolutionary Algorithm , 2004, GECCO.

[57]  Martin J. Oates,et al.  PESA-II: region-based selection in evolutionary multiobjective optimization , 2001 .

[58]  Marco Laumanns,et al.  Scalable Test Problems for Evolutionary Multiobjective Optimization , 2005, Evolutionary Multiobjective Optimization.

[59]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.