Correlative Analysis of Data and Functions of Neuronal Synapse

Until recently, the synaptic transmission and excitatory amino acid transporters activation of neurons are very well discussed in the previous studies and are considered to be the two distinct features of Synapse. It is also found that a large number of interactions take place in the domain of ionic exchanges and protein interactions in synapses. It is evolutionary to have destined to release of Neurotransmitters to conduct an impulse to the other consecutive neurons, which forms the most important characteristic of synapse. From the popular perspective, it has been identified that detailed theoretical closer correlation of data produced through various studies about synapse can unravel many mysteries related to functions of synapse. Hence, this research paper tries to concentrate on a selected group of prominent characteristics and properties of synapse and also highlights some noteworthy discoveries, emphasizing the influential capabilities of them in the thought process and improving the knowledge of the field. It also highlights the expressive properties and forms of synapse brought out through the evidences available in sparse to dense data in a correlational way.

[1]  M. Jacob,et al.  The Postsynaptic Adenomatous Polyposis Coli (APC) Multiprotein Complex Is Required for Localizing Neuroligin and Neurexin to Neuronal Nicotinic Synapses in Vivo , 2010, The Journal of Neuroscience.

[2]  T. Curran,et al.  Dok-7 regulates neuromuscular synapse formation by recruiting Crk and Crk-L. , 2010, Genes & development.

[3]  Yan Dong,et al.  Silent Synapses Speak Up , 2015, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[4]  J. Duncan,et al.  An adaptive coding model of neural function in prefrontal cortex , 2001, Nature Reviews Neuroscience.

[5]  K. Rosenblum,et al.  A Novel Role for Protein Synthesis in Long-Term Neuronal Plasticity: Maintaining Reduced Postburst Afterhyperpolarization , 2010, The Journal of Neuroscience.

[6]  G. Wolstenholme,et al.  The Spinal cord , 1953 .

[7]  K. Broadie,et al.  Roles of ubiquitination at the synapse. , 2008, Biochimica et biophysica acta.

[8]  R. Silver,et al.  Synaptic connections between layer 4 spiny neurone‐ layer 2/3 pyramidal cell pairs in juvenile rat barrel cortex: physiology and anatomy of interlaminar signalling within a cortical column , 2002, The Journal of physiology.

[9]  A. McAllister,et al.  Rapid recruitment of NMDA receptor transport packets to nascent synapses , 2002, Nature Neuroscience.

[10]  P. Carlen,et al.  Elevated potassium elicits recurrent surges of large GABAA-receptor-mediated post-synaptic currents in hippocampal CA3 pyramidal neurons. , 2011, Journal of neurophysiology.

[11]  B. Luikart,et al.  Receptor tyrosine kinase B-mediated excitatory synaptogenesis. , 2006, Progress in brain research.

[12]  Zhijian J. Chen,et al.  Cc2d1a, a C2 domain containing protein linked to nonsyndromic mental retardation, controls functional maturation of central synapses. , 2011, Journal of neurophysiology.

[13]  S. Schacher,et al.  Multifunctional Role of Protein Kinase C in Regulating the Formation and Maturation of Specific Synapses , 2007, The Journal of Neuroscience.

[14]  D. Muller,et al.  Regulation of GABAergic synapse formation and plasticity by GSK3β-dependent phosphorylation of gephyrin , 2010, Proceedings of the National Academy of Sciences.

[15]  E. Syková,et al.  Astroglial networks scale synaptic activity and plasticity , 2011, Proceedings of the National Academy of Sciences.

[16]  M. Poo,et al.  Retrograde signaling at central synapses , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[17]  H. Markram,et al.  The neocortical microcircuit as a tabula rasa. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Zhihua Feng,et al.  The Biology of Schwann Cells: The biology of perisynaptic (terminal) Schwann cells , 2007 .

[19]  K. Moulder,et al.  Plastic Elimination of Functional Glutamate Release Sites by Depolarization , 2004, Neuron.

[20]  P. Worley,et al.  Shank Expression Is Sufficient to Induce Functional Dendritic Spine Synapses in Aspiny Neurons , 2005, The Journal of Neuroscience.

[21]  H. Kreienkamp Organisation of G-protein-coupled receptor signalling complexes by scaffolding proteins. , 2002, Current opinion in pharmacology.

[22]  D. Kullmann,et al.  Target-Cell Specificity of Kainate Autoreceptor and Ca2+-Store-Dependent Short-Term Plasticity at Hippocampal Mossy Fiber Synapses , 2008, The Journal of Neuroscience.

[23]  E. Cropper,et al.  Effect of presynaptic membrane potential on electrical vs. chemical synaptic transmission. , 2011, Journal of neurophysiology.

[24]  Raika Pancaroglu,et al.  LRRTMs and Neuroligins Bind Neurexins with a Differential Code to Cooperate in Glutamate Synapse Development , 2010, The Journal of Neuroscience.

[25]  F. Schweizer,et al.  Ubiquitination Acutely Regulates Presynaptic Neurotransmitter Release in Mammalian Neurons , 2010, The Journal of Neuroscience.

[26]  I. Mori,et al.  Synaptic Polarity Depends on Phosphatidylinositol Signaling Regulated by myo-Inositol Monophosphatase in Caenorhabditis elegans , 2012, Genetics.

[27]  W. Kristan,et al.  Gap Junction Expression Is Required for Normal Chemical Synapse Formation , 2010, The Journal of Neuroscience.

[28]  David R. Colman,et al.  The Diversity of Cadherins and Implications for a Synaptic Adhesive Code in the CNS , 1999, Neuron.

[29]  M. Ghirardi,et al.  MAPK/Erk-dependent phosphorylation of synapsin mediates formation of functional synapses and short-term homosynaptic plasticity , 2010, Journal of Cell Science.

[30]  S. Hestrin,et al.  Electrical synapses define networks of neocortical GABAergic neurons , 2005, Trends in Neurosciences.

[31]  M. Sheng,et al.  PDZ domains and the organization of supramolecular complexes. , 2001, Annual review of neuroscience.

[32]  E. Gundelfinger,et al.  The Actin-Binding Protein Abp1 Controls Dendritic Spine Morphology and Is Important for Spine Head and Synapse Formation , 2008, The Journal of Neuroscience.

[33]  Leslie M Loew,et al.  Intracellular signaling: spatial and temporal control. , 2005, Physiology.

[34]  R. W Guillery,et al.  Early electron microscopic observations of synaptic structures in the cerebral cortex: a view of the contributions made by George Gray (1924–1999) , 2000, Trends in Neurosciences.

[35]  E. Huang,et al.  Trk receptors: roles in neuronal signal transduction. , 2003, Annual review of biochemistry.

[36]  Mark von Zastrow,et al.  Rapid redistribution of glutamate receptors contributes to long-term depression in hippocampal cultures , 1999, Nature Neuroscience.

[37]  R. Bruzzone,et al.  Structure and function of gap junctions in the developing brain , 2006, Cell and Tissue Research.

[38]  R. Luján,et al.  Cysteine String Protein-α Prevents Activity-Dependent Degeneration in GABAergic Synapses , 2010, The Journal of Neuroscience.

[39]  B. Barres,et al.  Signaling between glia and neurons: focus on synaptic plasticity , 2005, Current Opinion in Neurobiology.

[40]  A. Nairn,et al.  Variability of Distribution of Ca2+/Calmodulin-Dependent Kinase II at Mixed Synapses on the Mauthner Cell: Colocalization and Association with Connexin 35 , 2010, The Journal of Neuroscience.

[41]  Vladimir Parpura,et al.  Glial ⇔ Neuronal Signaling , 2004, Springer US.

[42]  S. Thayer,et al.  Lithium Increases Synapse Formation between Hippocampal Neurons by Depleting Phosphoinositides , 2009, Molecular Pharmacology.

[43]  H. Wigström,et al.  Long‐term Depression in the Hippocampal CA1 Region is Associated with Equal Changes in AMPA and NMDA Receptor‐mediated Synaptic Potentials , 1994, The European journal of neuroscience.

[44]  R. Carroll,et al.  Selective translocation of Ca2+/calmodulin protein kinase IIα (CaMKIIα) to inhibitory synapses , 2010, Proceedings of the National Academy of Sciences.

[45]  D. Whitteridge,et al.  Synaptic targets of HRP-filled layer III pyramidal cells in the cat striate cortex , 2004, Experimental Brain Research.

[46]  H. Atwood,et al.  Diversification of synaptic strength: presynaptic elements , 2002, Nature Reviews Neuroscience.

[47]  D. Chklovskii,et al.  Geometry and Structural Plasticity of Synaptic Connectivity , 2002, Neuron.

[48]  Michael Frotscher,et al.  Structural Determinants of Transmission at Large Hippocampal Mossy Fiber Synapses , 2007, The Journal of Neuroscience.

[49]  J. Sanes,et al.  Induction, assembly, maturation and maintenance of a postsynaptic apparatus , 2001, Nature reviews. Neuroscience.

[50]  E. Hanse,et al.  Development of synaptic connectivity onto interneurons in stratum radiatum in the CA1 region of the rat hippocampus , 2012, BMC Neuroscience.

[51]  U. Gerber,et al.  Coincident Pre- and Postsynaptic Activation Induces Dendritic Filopodia via Neurotrypsin-Dependent Agrin Cleavage , 2009, Cell.

[52]  R. Guillery Histology of the Nervous System by Santiago Ramón y Cajal. Translated into English from the French edition by Neely Swanson and Larry W. Swanson, Oxford University Press, 1995. $195.00 (1672 pp) ISBN 0 19 507 4017 , 1996, Trends in Neurosciences.

[53]  Jurgen Müller,et al.  Compartmentalization of the MAPK scaffold protein KSR1 modulates synaptic plasticity in hippocampal neurons , 2011, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[54]  H. Markram,et al.  Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. , 1997, The Journal of physiology.

[55]  Roberto Malinow,et al.  LTP mechanisms: from silence to four-lane traffic , 2000, Current Opinion in Neurobiology.

[56]  Yun Song,et al.  DMob4/Phocein Regulates Synapse Formation, Axonal Transport, and Microtubule Organization , 2010, The Journal of Neuroscience.

[57]  R. Robitaille,et al.  Perisynaptic Schwann Cells at the Neuromuscular Junction: Nerve- and Activity-Dependent Contributions to Synaptic Efficacy, Plasticity, and Reinnervation , 2003, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[58]  G. Buzsáki,et al.  Single granule cells reliably discharge targets in the hippocampal CA3 network in vivo , 2002, Nature Neuroscience.

[59]  Kevan A. C. Martin,et al.  Protracted Synaptogenesis after Activity-Dependent Spinogenesis in Hippocampal Neurons , 2007, The Journal of Neuroscience.

[60]  Susumu Tonegawa,et al.  Transgenic Inhibition of Synaptic Transmission Reveals Role of CA3 Output in Hippocampal Learning , 2008, Science.

[61]  P. Carlen,et al.  Characterizing the persistent CA3 interneuronal spiking activity in elevated extracellular potassium in the young rat hippocampus , 2010, Brain Research.

[62]  R. Nicoll,et al.  NMDA-receptor-dependent synaptic plasticity: multiple forms and mechanisms , 1993, Trends in Neurosciences.

[63]  C. Chang,et al.  Calcium-Independent Inhibitory G-Protein Signaling Induces Persistent Presynaptic Muting of Hippocampal Synapses , 2011, The Journal of Neuroscience.

[64]  D. O'Leary,et al.  Glutamate receptor blockade at cortical synapses disrupts development of thalamocortical and columnar organization in somatosensory cortex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[65]  D. Kullmann,et al.  Long-term synaptic plasticity in hippocampal interneurons , 2007, Nature Reviews Neuroscience.

[66]  E. Rajasekaran,et al.  Evaluation of the Structural disorder of the protein FMR1 with Carbon Composition , 2012, 1203.6721.

[67]  N. Danbolt Glutamate uptake , 2001, Progress in Neurobiology.

[68]  M. Moser,et al.  Pattern Separation in the Dentate Gyrus and CA3 of the Hippocampus , 2007, Science.

[69]  M. Wilson,et al.  NMDA receptors, place cells and hippocampal spatial memory , 2004, Nature Reviews Neuroscience.

[70]  Camillo Golgi.,et al.  La doctrine du neurone. , 2009 .

[71]  E. De robertis,et al.  Submicroscopic morphology of the synapse. , 1959, International review of cytology.

[72]  J. Lübke,et al.  Reliable synaptic connections between pairs of excitatory layer 4 neurones within a single ‘barrel’ of developing rat somatosensory cortex , 1999, The Journal of physiology.

[73]  R. Cachope Functional diversity on synaptic plasticity mediated by endocannabinoids , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[74]  Chen Zhang,et al.  SynDB: a Synapse protein DataBase based on synapse ontology , 2006, Nucleic Acids Res..

[75]  E. Nieschlag [OTTO DEITERS (1834-1863)]. , 1965, Die Medizinische Welt.

[76]  Eunjoon Kim,et al.  Selected SALM (Synaptic Adhesion-Like Molecule) Family Proteins Regulate Synapse Formation , 2010, The Journal of Neuroscience.

[77]  T. Branco,et al.  The probability of neurotransmitter release: variability and feedback control at single synapses , 2009, Nature Reviews Neuroscience.

[78]  D. Schmitz,et al.  Munc13-2 differentially affects hippocampal synaptic transmission and plasticity. , 2010, Cerebral cortex.

[79]  S. Hochman THE SPINAL CORD , 2007 .

[80]  M. Sheng,et al.  Molecular mechanisms of dendritic spine morphogenesis , 2006, Current Opinion in Neurobiology.

[81]  Rodolfo R. Llinás,et al.  The contribution of Santiago Ramon y Cajal to functional neuroscience , 2003, Nature Reviews Neuroscience.

[82]  C. Dotti,et al.  Localized recruitment and activation of RhoA underlies dendritic spine morphology in a glutamate receptor–dependent manner , 2006, The Journal of cell biology.

[83]  D. Atasoy,et al.  Presynaptic Unsilencing: Searching for a Mechanism , 2006, Neuron.

[84]  R. Malinow,et al.  Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice , 1995, Nature.

[85]  Larissa A. Jarzylo,et al.  Parasynaptic NMDA Receptor Signaling Couples Neuronal Glutamate Transporter Function to AMPA Receptor Synaptic Distribution and Stability , 2012, The Journal of Neuroscience.

[86]  S L Pallas,et al.  NMDA antagonists in the superior colliculus prevent developmental plasticity but not visual transmission or map compression. , 2001, Journal of neurophysiology.

[87]  P. Haydon Glia: listening and talking to the synapse , 2001, Nature Reviews Neuroscience.

[88]  E. Schuman,et al.  A proteasome-sensitive connection between PSD-95 and GluR1 endocytosis , 2004, Neuropharmacology.

[89]  Camillo Golgi. La doctrine du neurone. Théorie et faits. Conférence Nobel faite à Stockholm le 12 décembre 1906 , 1907 .

[90]  B. Sutor,et al.  Involvement of gap junctions in the development of the neocortex. , 2005, Biochimica et biophysica acta.

[91]  R. Guillery,et al.  Synaptic morphology in the normal and degenerating nervous system. , 1966, International review of cytology.

[92]  M. Bennett,et al.  Electrical Coupling and Neuronal Synchronization in the Mammalian Brain , 2004, Neuron.

[93]  Enrico Cherubini,et al.  ‘Deaf, mute and whispering’ silent synapses: their role in synaptic plasticity , 2004, The Journal of physiology.

[94]  Jianhua Xu,et al.  The Role of Calcium/Calmodulin-Activated Calcineurin in Rapid and Slow Endocytosis at Central Synapses , 2010, The Journal of Neuroscience.

[95]  Antony W. Goodwin,et al.  ELECTRICAL SYNAPSES IN THE MAMMALIAN BRAIN , 2010 .

[96]  B. Sabatini,et al.  Distinct Structural and Ionotropic Roles of NMDA Receptors in Controlling Spine and Synapse Stability , 2007, The Journal of Neuroscience.

[97]  S. J. Martin,et al.  Synaptic plasticity and memory: an evaluation of the hypothesis. , 2000, Annual review of neuroscience.

[98]  Eunjoon Kim,et al.  Trans-synaptic Adhesions between Netrin-G Ligand-3 (NGL-3) and Receptor Tyrosine Phosphatases LAR, Protein-tyrosine Phosphatase δ (PTPδ), and PTPσ via Specific Domains Regulate Excitatory Synapse Formation* , 2010, The Journal of Biological Chemistry.

[99]  R. Fields,et al.  New insights into neuron-glia communication. , 2002, Science.

[100]  Zachary M Grinspan,et al.  Quantal transmission at mossy fibre targets in the CA3 region of the rat hippocampus , 2004, The Journal of physiology.

[101]  P. Kaiser,et al.  Expanding horizons at Big Sky , 2007, EMBO reports.

[102]  T. Matsui,et al.  Cholecystokinin Facilitates Glutamate Release by Increasing the Number of Readily Releasable Vesicles and Releasing Probability , 2010, The Journal of Neuroscience.

[103]  K. Christian,et al.  BDNF: A key regulator for protein synthesis-dependent LTP and long-term memory? , 2008, Neurobiology of Learning and Memory.

[104]  T. Boeckers,et al.  The postsynaptic density , 2006, Cell and Tissue Research.

[105]  Y. Goda,et al.  The actin cytoskeleton: integrating form and function at the synapse. , 2005, Annual review of neuroscience.

[106]  A. Stepanyants,et al.  Cooperative synapse formation in the neocortex , 2009, Proceedings of the National Academy of Sciences.

[107]  J. Lacaille,et al.  Compartmentalized Ca2+ Channel Regulation at Divergent Mossy-Fiber Release Sites Underlies Target Cell-Dependent Plasticity , 2006, Neuron.

[108]  R. W. Guillery Observations of synaptic structures: origins of the neuron doctrine and its current status , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[109]  K. Shen,et al.  Guidance molecules in synapse formation and plasticity. , 2010, Cold Spring Harbor perspectives in biology.

[110]  K. Moulder,et al.  A Specific Role for Ca2+-Dependent Adenylyl Cyclases in Recovery from Adaptive Presynaptic Silencing , 2008, The Journal of Neuroscience.

[111]  D. Chklovskii,et al.  Neurogeometry and potential synaptic connectivity , 2005, Trends in Neurosciences.

[112]  M. Frotscher,et al.  Timing and efficacy of transmitter release at mossy fiber synapses in the hippocampal network , 2006, Pflügers Archiv.

[113]  S. Oliet,et al.  Glial modulation of synaptic transmission: Insights from the supraoptic nucleus of the hypothalamus , 2004, Glia.

[114]  M. Ehlers,et al.  Emerging Roles for Ubiquitin and Protein Degradation in Neuronal Function , 2007, Pharmacological Reviews.