Electrical and thermal conduction in atomic layer deposition nanobridges down to 7 nm thickness.

While the literature is rich with data for the electrical behavior of nanotransistors based on semiconductor nanowires and carbon nanotubes, few data are available for ultrascaled metal interconnects that will be demanded by these devices. Atomic layer deposition (ALD), which uses a sequence of self-limiting surface reactions to achieve high-quality nanolayers, provides an unique opportunity to study the limits of electrical and thermal conduction in metal interconnects. This work measures and interprets the electrical and thermal conductivities of free-standing platinum films of thickness 7.3, 9.8, and 12.1 nm in the temperature range from 50 to 320 K. Conductivity data for the 7.3 nm bridge are reduced by 77.8% (electrical) and 66.3% (thermal) compared to bulk values due to electron scattering at material and grain boundaries. The measurement results indicate that the contribution of phonon conduction is significant in the total thermal conductivity of the ALD films.

[1]  F. Prinz,et al.  Application of Atomic Layer Deposition of Platinum to Solid Oxide Fuel Cells , 2008 .

[2]  L. Lu,et al.  3ω method for specific heat and thermal conductivity measurements , 2001, quant-ph/0202038.

[3]  M. Shatzkes,et al.  Electrical-Resistivity Model for Polycrystalline Films: the Case of Arbitrary Reflection at External Surfaces , 1970 .

[4]  V. Bright,et al.  ALD tungsten NEMS switches and tunneling devices , 2011 .

[5]  K. Kukli,et al.  Atomic layer deposition of oxide thin films with metal alkoxides as oxygen sources , 2000, Science.

[6]  Steven M. George,et al.  Surface chemistry of Al2O3 deposition using Al(CH3)3 and H2O in a binary reaction sequence , 1995 .

[7]  Steven M. George,et al.  Atomic-layer deposition of wear-resistant coatings for microelectromechanical devices , 2003 .

[8]  H. Hoffmann,et al.  Mean free path and effective density of conduction electrons in polycrystalline metal films , 1984 .

[9]  Mikko Ritala,et al.  Atomic layer deposition (ALD): from precursors to thin film structures , 2002 .

[10]  S. R. Harutyunyan,et al.  Electrical and thermal transport in single nickel nanowire , 2008 .

[11]  Charles M. Lieber,et al.  Functional nanoscale electronic devices assembled using silicon nanowire building blocks. , 2001, Science.

[12]  Sang Chul Lee,et al.  Thermal conductivity anisotropy and grain structure in Ge2Sb2Te5 films , 2011 .

[13]  Klaus Fuchs,et al.  The conductivity of thin metallic films according to the electron theory of metals , 1938, Mathematical Proceedings of the Cambridge Philosophical Society.

[14]  D. Cahill,et al.  Ultra-Low Thermal Conductivity in W/Al2O3 Nanolaminates , 2004, Science.

[15]  M. Ritala,et al.  Atomic Layer Deposition of Platinum Thin Films , 2003 .

[16]  M. Isshiki,et al.  Electrical resistivity of Cu films deposited by ion beam deposition: Effects of grain size, impurities, and morphological defect , 2006 .

[17]  P. Heino,et al.  Thermal conduction at the nanoscale in some metals by MD , 2003, Microelectron. J..

[18]  M. Stordeur,et al.  Thermal conductivity of thin amorphous alumina films , 1993 .

[19]  A R Plummer,et al.  Introduction to Solid State Physics , 1967 .

[20]  M. Shatzkes,et al.  ELECTRICAL RESISTIVITY MODEL FOR POLYCRYSTALLINE FILMS: THE CASE OF SPECULAR REFLECTION AT EXTERNAL SURFACES , 1969 .

[21]  D. H. S. Maithripala,et al.  Thermal conductivity in metallic nanostructures at high temperature: Electrons, phonons, and the Wiedemann-Franz law , 2010 .

[22]  Eric Pop,et al.  Heat Generation and Transport in Nanometer-Scale Transistors , 2006, Proceedings of the IEEE.

[23]  R. Waser,et al.  Electrical properties of Pt interconnects for passive crossbar memory arrays , 2009 .

[24]  Xing Zhang,et al.  Influence of grain boundary scattering on the electrical and thermal conductivities of polycrystalline gold nanofilms , 2006 .

[25]  G. White,et al.  THERMAL AND ELECTRICAL CONDUCTIVITIES OF SOLIDS AT LOW TEMPERATURES , 1955 .

[26]  M. Ferenets,et al.  Thin Solid Films , 2010 .

[27]  Xing Zhang,et al.  Thermal and electrical conductivity of a suspended platinum nanofilm , 2005 .

[28]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.

[29]  S. George,et al.  Low-Temperature Al2O3 Atomic Layer Deposition , 2004 .

[30]  Xing Zhang,et al.  Influence of grain boundary scattering on the electrical properties of platinum nanofilms , 2006 .