Thermotoga maritima IscU. Structural characterization and dynamics of a new class of metallochaperone.

[1]  I. Bertini,et al.  A new zinc-protein coordination site in intracellular metal trafficking: solution structure of the Apo and Zn(II) forms of ZntA(46-118). , 2002, Journal of molecular biology.

[2]  Shu-Pao Wu,et al.  Iron-sulfur cluster biosynthesis. Kinetic analysis of [2Fe-2S] cluster transfer from holo ISU to apo Fd: role of redox chemistry and a conserved aspartate. , 2002, Biochemistry.

[3]  S. Mansy,et al.  Iron-Sulfur Cluster Biosynthesis , 2002, The Journal of Biological Chemistry.

[4]  Torsten Herrmann,et al.  Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. , 2002, Journal of molecular biology.

[5]  S. Mansy,et al.  Characterization of an iron-sulfur cluster assembly protein (ISU1) from Schizosaccharomyces pombe. , 2002, Biochemistry.

[6]  I. Bertini,et al.  Solution structure of the N-terminal domain of a potential copper-translocating P-type ATPase from Bacillus subtilis in the apo and Cu(I) loaded states. , 2002, Journal of molecular biology.

[7]  J. V. Van Beeumen,et al.  Molecular characterization of Bacilluspasteurii UreE, a metal-binding chaperone for the assembly of the urease active site , 2002, JBIC Journal of Biological Inorganic Chemistry.

[8]  I. Felli,et al.  Direct detection of hydrogen bonds in monomeric superoxide dismutase: biological implications. , 2002, Biochemistry.

[9]  H. Dyson,et al.  Coupling of folding and binding for unstructured proteins. , 2002, Current opinion in structural biology.

[10]  G. Storz Faculty Opinions recommendation of IscR, an Fe-S cluster-containing transcription factor, represses expression of Escherichia coli genes encoding Fe-S cluster assembly proteins. , 2002 .

[11]  J. V. Van Beeumen,et al.  Structural Basis for Ni2+Transport and Assembly of the Urease Active Site by the Metallochaperone UreE from Bacillus pasteurii * , 2001, The Journal of Biological Chemistry.

[12]  R. Huber,et al.  Crystal Structure of Klebsiella aerogenesUreE, a Nickel-binding Metallochaperone for Urease Activation* , 2001, The Journal of Biological Chemistry.

[13]  P. Kiley,et al.  IscR, an Fe-S cluster-containing transcription factor, represses expression of Escherichia coli genes encoding Fe-S cluster assembly proteins , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[14]  I. Bertini,et al.  Copper trafficking: the solution structure of Bacillus subtilis CopZ. , 2001, Biochemistry.

[15]  H. Dyson,et al.  Conformational and dynamic characterization of the molten globule state of an apomyoglobin mutant with an altered folding pathway. , 2001, Biochemistry.

[16]  T. O’Halloran,et al.  Copper Stabilizes a Heterodimer of the yCCS Metallochaperone and Its Target Superoxide Dismutase* , 2001, The Journal of Biological Chemistry.

[17]  C. Krebs,et al.  IscA, an alternate scaffold for Fe-S cluster biosynthesis. , 2001, Biochemistry.

[18]  T. Logan,et al.  Disordered to ordered folding in the regulation of diphtheria toxin repressor activity , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[19]  A. Lamb,et al.  Heterodimeric structure of superoxide dismutase in complex with its metallochaperone , 2001, Nature Structural Biology.

[20]  M. Fontecave,et al.  Iron-Sulfur Cluster Assembly , 2001, The Journal of Biological Chemistry.

[21]  J. Pitera,et al.  Assessing the effect of conformational averaging on the measured values of observables , 2001, Journal of biomolecular NMR.

[22]  I. Bertini,et al.  Solution Structure of the Yeast Copper Transporter Domain Ccc2a in the Apo and Cu(I)-loaded States* , 2001, The Journal of Biological Chemistry.

[23]  H. Dyson,et al.  NMR structural and dynamic characterization of the acid-unfolded state of apomyoglobin provides insights into the early events in protein folding. , 2001, Biochemistry.

[24]  I. Bertini,et al.  Solution structure of the Cu(I) and apo forms of the yeast metallochaperone, Atx1. , 2001, Biochemistry.

[25]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[26]  C. Yu,et al.  Identification and Characterization of an Equilibrium Intermediate in the Unfolding Pathway of an All β-Barrel Protein* , 2000, The Journal of Biological Chemistry.

[27]  A. Wernimont,et al.  Structural basis for copper transfer by the metallochaperone for the Menkes/Wilson disease proteins , 2000, Nature Structural Biology.

[28]  U. Heinemann,et al.  Adrenodoxin: Structure, stability, and electron transfer properties , 2000, Proteins.

[29]  R. Lill,et al.  Maturation of cellular Fe-S proteins: an essential function of mitochondria. , 2000, Trends in biochemical sciences.

[30]  Gottfried Otting,et al.  Alignment of Biological Macromolecules in Novel Nonionic Liquid Crystalline Media for NMR Experiments , 2000 .

[31]  J. Silberg,et al.  Interaction of the iron-sulfur cluster assembly protein IscU with the Hsc66/Hsc20 molecular chaperone system of Escherichia coli. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[32]  S. Mansy,et al.  A Mutant Human IscU Protein Contains a Stable [2Fe−2S]2+ Center of Possible Functional Significance , 2000 .

[33]  C. Krebs,et al.  IscU as a scaffold for iron-sulfur cluster biosynthesis: sequential assembly of [2Fe-2S] and [4Fe-4S] clusters in IscU. , 2000, Biochemistry.

[34]  S. Sugai,et al.  Molten globule structure of equine beta-lactoglobulin probed by hydrogen exchange. , 2000, Journal of molecular biology.

[35]  L. T. Jensen,et al.  Role of Saccharomyces cerevisiae ISA1and ISA2 in Iron Homeostasis , 2000, Molecular and Cellular Biology.

[36]  R. Lill,et al.  Isa1p Is a Component of the Mitochondrial Machinery for Maturation of Cellular Iron-Sulfur Proteins and Requires Conserved Cysteine Residues for Function* , 2000, The Journal of Biological Chemistry.

[37]  J. Agar,et al.  Modular organization and identification of a mononuclear iron-binding site within the NifU protein , 2000, JBIC Journal of Biological Inorganic Chemistry.

[38]  T. O’Halloran,et al.  Structure and chemistry of the copper chaperone proteins. , 2000, Current opinion in chemical biology.

[39]  I. Tanaka,et al.  Structure and thermodynamics of the extraordinarily stable molten globule state of canine milk lysozyme. , 2000, Biochemistry.

[40]  Michael K. Rosen,et al.  Autoinhibition and activation mechanisms of the Wiskott–Aldrich syndrome protein , 2000, Nature.

[41]  P. Kiley,et al.  Substitution of Leucine 28 with Histidine in theEscherichia coli Transcription Factor FNR Results in Increased Stability of the [4Fe-4S]2+ Cluster to Oxygen* , 2000, The Journal of Biological Chemistry.

[42]  R. Norton,et al.  The single mutation Phe173 --> Ala induces a molten globule-like state in murine interleukin-6. , 2000, Biochemistry.

[43]  J. Agar Role of the IscU protein in iron-sulfur cluster biosynthesis. IscS-mediated assembly of a [Fe_2S_2] cluster in IscU , 2000 .

[44]  R. Lill,et al.  A mitochondrial ferredoxin is essential for biogenesis of cellular iron-sulfur proteins. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[45]  J. Agar,et al.  NifS-directed assembly of a transient [2Fe-2S] cluster within the NifU protein. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[46]  S. Garland,et al.  Saccharomyces cerevisiae ISU1 and ISU2: members of a well-conserved gene family for iron-sulfur cluster assembly. , 1999, Journal of molecular biology.

[47]  M. Schaefer,et al.  Interaction of the copper chaperone HAH1 with the Wilson disease protein is essential for copper homeostasis. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[48]  Y. Takahashi,et al.  Functional assignment of the ORF2-iscS-iscU-iscA-hscB-hscA-fdx-ORF3 gene cluster involved in the assembly of Fe-S clusters in Escherichia coli. , 1999, Journal of biochemistry.

[49]  H. Dyson,et al.  Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. , 1999, Journal of molecular biology.

[50]  T. Gilliam,et al.  Characterization of the Interaction between the Wilson and Menkes Disease Proteins and the Cytoplasmic Copper Chaperone, HAH1p* , 1999, The Journal of Biological Chemistry.

[51]  R. Hausinger,et al.  GTP-dependent activation of urease apoprotein in complex with the UreD, UreF, and UreG accessory proteins. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[52]  Torsten Herrmann,et al.  NMR Structure and Metal Interactions of the CopZ Copper Chaperone* , 1999, The Journal of Biological Chemistry.

[53]  A. Wernimont,et al.  Crystal structure of the copper chaperone for superoxide dismutase , 1999, Nature Structural Biology.

[54]  Anne Lecroisey,et al.  The crystal structure of HasA, a hemophore secreted by Serratia marcescens , 1999, Nature Structural Biology.

[55]  E. Ochiai Inorganic Biochemistry, An Introduction; 2nd Edition (Cowan, J. A.) , 1999 .

[56]  W F van Gunsteren,et al.  Side-chain conformational disorder in a molten globule: molecular dynamics simulations of the A-state of human alpha-lactalbumin. , 1999, Journal of molecular biology.

[57]  M. Tsai,et al.  Structural analysis of phospholipase A2 from functional perspective. 1. Functionally relevant solution structure and roles of the hydrogen-bonding network. , 1999, Biochemistry.

[58]  M. Tsai,et al.  Structural analysis of phospholipase A2 from functional perspective. 2. Characterization of a molten globule-like state induced by site-specific mutagenesis. , 1999, Biochemistry.

[59]  S. Garland,et al.  Suppressors of Superoxide Dismutase (SOD1) Deficiency in Saccharomyces cerevisiae , 1998, The Journal of Biological Chemistry.

[60]  K Wüthrich,et al.  TROSY in triple-resonance experiments: new perspectives for sequential NMR assignment of large proteins. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[61]  H. Hennecke,et al.  Prototype of a heme chaperone essential for cytochrome c maturation. , 1998, Science.

[62]  D. Dean,et al.  Assembly of Iron-Sulfur Clusters , 1998, The Journal of Biological Chemistry.

[63]  A. Bax,et al.  Measurement of J and dipolar couplings from simplified two-dimensional NMR spectra. , 1998, Journal of magnetic resonance.

[64]  R. Bensasson,et al.  Inorganic biochemistry. An introduction , 1998 .

[65]  P E Wright,et al.  Populating the equilibrium molten globule state of apomyoglobin under conditions suitable for structural characterization by NMR , 1997, FEBS letters.

[66]  Shin Lin,et al.  Metal ion chaperone function of the soluble Cu(I) receptor Atx1. , 1997, Science.

[67]  K. Wüthrich,et al.  Torsion angle dynamics for NMR structure calculation with the new program DYANA. , 1997, Journal of molecular biology.

[68]  Christopher M. Dobson,et al.  A residue-specific NMR view of the non-cooperative unfolding of a molten globule , 1997, Nature Structural Biology.

[69]  S. Opella,et al.  Structures of the reduced and mercury-bound forms of MerP, the periplasmic protein from the bacterial mercury detoxification system. , 1997, Biochemistry.

[70]  L. Kay,et al.  Characterization of the backbone dynamics of folded and denatured states of an SH3 domain. , 1997, Biochemistry.

[71]  P. Wright,et al.  Is apomyoglobin a molten globule? Structural characterization by NMR. , 1996, Journal of molecular biology.

[72]  H. Santos,et al.  New compatible solutes related to Di-myo-inositol-phosphate in members of the order Thermotogales , 1996, Journal of bacteriology.

[73]  M. Billeter,et al.  MOLMOL: a program for display and analysis of macromolecular structures. , 1996, Journal of molecular graphics.

[74]  J. Keeler,et al.  Minimisation of sensitivity losses due to the use of gradient pulses in triple-resonance NMR of proteins , 1995, Journal of biomolecular NMR.

[75]  H. Mantsch,et al.  Protein folding intermediates with rapidly exchangeable amide protons contain authentic hydrogen-bonded secondary structures. , 1995, Biochemistry.

[76]  B. Sykes,et al.  Quantification of the calcium‐induced secondary structural changes in the regulatory domain of troponin‐C , 1994, Protein science : a publication of the Protein Society.

[77]  L. Kay,et al.  Enhanced-Sensitivity Triple-Resonance Spectroscopy with Minimal H2O Saturation , 1994 .

[78]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[79]  R. White,et al.  Mechanism for the desulfurization of L-cysteine catalyzed by the nifS gene product. , 1994, Biochemistry.

[80]  S. Glaser,et al.  A general enhancement scheme in heteronuclear multidimensional NMR employing pulsed field gradients , 1994, Journal of biomolecular NMR.

[81]  D. Wishart,et al.  The 13C Chemical-Shift Index: A simple method for the identification of protein secondary structure using 13C chemical-shift data , 1994, Journal of biomolecular NMR.

[82]  S. Grzesiek,et al.  The Importance of Not Saturating H2o in Protein NMR : application to Sensitivity Enhancement and Noe Measurements , 1993 .

[83]  C. Griesinger,et al.  Coherence Selection by Gradients without Signal Attenuation: Application to the Three‐Dimensional HNCO Experiment , 1993 .

[84]  L. Vickery,et al.  Charge pair interactions stabilizing ferredoxin-ferredoxin reductase complexes. Identification by complementary site-specific mutations. , 1993, The Journal of biological chemistry.

[85]  Ad Bax,et al.  Quantitative J correlation: a new approach for measuring homonuclear three-bond J(HNH.alpha.) coupling constants in 15N-enriched proteins , 1993 .

[86]  L. Kay,et al.  A Gradient-Enhanced HCCH-TOCSY Experiment for Recording Side-Chain 1H and 13C Correlations in H2O Samples of Proteins , 1993 .

[87]  Robert H. White,et al.  Cysteine desulfurase activity indicates a role for NIFS in metallocluster biosynthesis. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[88]  J. Silva,et al.  Molten-globule conformation of Arc repressor monomers determined by high-pressure 1H NMR spectroscopy. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[89]  C M Dobson,et al.  Structure and dynamics of the acid-denatured molten globule state of alpha-lactalbumin: a two-dimensional NMR study. , 1993, Biochemistry.

[90]  V. Saudek,et al.  Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions , 1992, Journal of biomolecular NMR.

[91]  L. Kay,et al.  Pulse sequences for removal of the effects of cross correlation between dipolar and chemical-shift anisotropy relaxation mechanisms on the measurement of heteronuclear T1 and T2 values in proteins , 1992 .

[92]  S. Grzesiek,et al.  Improved 3D triple-resonance NMR techniques applied to a 31 kDa protein , 1992 .

[93]  A. Bax,et al.  An alternative 3D NMR technique for correlating backbone 15N with side chain Hβ resonances in larger proteins , 1991 .

[94]  V. Coghlan,et al.  Site-specific mutations in human ferredoxin that affect binding to ferredoxin reductase and cytochrome P450scc. , 1991, The Journal of biological chemistry.

[95]  K Wüthrich,et al.  Efficient analysis of protein 2D NMR spectra using the software packageEASY , 1991, Journal of biomolecular NMR.

[96]  P. Wright,et al.  Intramolecular motions of a zinc finger DNA-binding domain from Xfin characterized by proton-detected natural abundance carbon-13 heteronuclear NMR spectroscopy , 1991 .

[97]  S. Macura,et al.  Refinement of the NMR solution structure of a protein to remove distortions arising from neglect of internal motion. , 1991, Biochemistry.

[98]  K Wüthrich,et al.  Efficient computation of three-dimensional protein structures in solution from nuclear magnetic resonance data using the program DIANA and the supporting programs CALIBA, HABAS and GLOMSA. , 1991, Journal of molecular biology.

[99]  L. Kay,et al.  Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. , 1989, Biochemistry.

[100]  G. Wider,et al.  A heteronuclear three-dimensional NMR experiment for measurements of small heteronuclear coupling constants in biological macromolecules , 1989 .

[101]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[102]  C M Dobson,et al.  Characterization of a partly folded protein by NMR methods: studies on the molten globule state of guinea pig alpha-lactalbumin. , 1989, Biochemistry.

[103]  D. Wetlaufer Protein structure. , 1986, Science.

[104]  K. Wüthrich,et al.  Application of phase sensitive two-dimensional correlated spectroscopy (COSY) for measurements of 1H-1H spin-spin coupling constants in proteins. , 1983, Biochemical and biophysical research communications.

[105]  O Jardetzky,et al.  On the nature of molecular conformations inferred from high-resolution NMR. , 1980, Biochimica et biophysica acta.

[106]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[107]  D. Naumann,et al.  Transient non-native secondary structures during the refolding of α-lactalbumin detected by infrared spectroscopy , 2000, Nature Structural Biology.