Mesh size functions for implicit geometries and PDE-based gradient limiting

Mesh generation and mesh enhancement algorithms often require a mesh size function to specify the desired size of the elements. We present algorithms for automatic generation of a size function, discretized on a background grid, by using distance functions and numerical PDE solvers. The size function is adapted to the geometry, taking into account the local feature size and the boundary curvature. It also obeys a grading constraint that limits the size ratio of neighboring elements. We formulate the feature size in terms of the medial axis transform, and show how to compute it accurately from a distance function. We propose a new Gradient Limiting Equation for the mesh grading requirement, and we show how to solve it numerically with Hamilton–Jacobi solvers. We show examples of the techniques using Cartesian and unstructured background grids in 2D and 3D, and applications with numerical adaptation and mesh generation for images.

[1]  D. Meiron,et al.  Efficient algorithms for solving static hamilton-jacobi equations , 2003 .

[2]  J A Sethian,et al.  A fast marching level set method for monotonically advancing fronts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Jim Ruppert,et al.  A Delaunay Refinement Algorithm for Quality 2-Dimensional Mesh Generation , 1995, J. Algorithms.

[4]  Marshall W. Bern,et al.  Surface Reconstruction by Voronoi Filtering , 1998, SCG '98.

[5]  J. Sethian,et al.  Numerical Schemes for the Hamilton-Jacobi and Level Set Equations on Triangulated Domains , 1998 .

[6]  Ted D. Blacker,et al.  Paving: A new approach to automated quadrilateral mesh generation , 1991 .

[7]  Mark Yerry,et al.  A Modified Quadtree Approach To Finite Element Mesh Generation , 1983, IEEE Computer Graphics and Applications.

[8]  A. Edelman,et al.  Mesh generation for implicit geometries , 2005 .

[9]  J A Sethian,et al.  Computing geodesic paths on manifolds. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Jonathan Richard Shewchuk,et al.  Delaunay refinement algorithms for triangular mesh generation , 2002, Comput. Geom..

[11]  S. Osher,et al.  A level set approach for computing solutions to incompressible two-phase flow , 1994 .

[12]  S. Osher,et al.  Algorithms Based on Hamilton-Jacobi Formulations , 1988 .

[13]  Jin Zhu A New Type of Size Function Respecting Premeshed Entities , 2003, IMR.

[14]  Kaleem Siddiqi,et al.  The Hamilton-Jacobi skeleton , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[16]  D. Lee,et al.  Skeletonization via Distance Maps and Level Sets , 1995 .

[17]  O. C. Zienkiewicz,et al.  Adaptive remeshing for compressible flow computations , 1987 .

[18]  J. Tsitsiklis,et al.  Efficient algorithms for globally optimal trajectories , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[19]  Per-Olof Persson,et al.  A Simple Mesh Generator in MATLAB , 2004, SIAM Rev..

[20]  H. Blum Biological shape and visual science (part I) , 1973 .

[21]  Tony F. Chan,et al.  Active contours without edges , 2001, IEEE Trans. Image Process..

[22]  G. Rodrigue,et al.  A generalized front marching algorithm for the solution of the eikonal equation , 2003 .

[23]  Claes Johnson,et al.  Computational Differential Equations , 1996 .

[24]  Steven J. Owen,et al.  Surface mesh sizing control , 2000 .

[25]  Frédéric Hecht,et al.  MESH GRADATION CONTROL , 1998 .

[26]  Jin Zhu,et al.  Background Overlay Grid Size Functions , 2002, IMR.

[27]  Pascal J. Frey,et al.  Fast Adaptive Quadtree Mesh Generation , 1998, IMR.

[28]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[29]  Martin Rumpf,et al.  A Continuous Skeletonization Method Based on Level Sets , 2002, VisSym.

[30]  J. Sethian,et al.  FRONTS PROPAGATING WITH CURVATURE DEPENDENT SPEED: ALGORITHMS BASED ON HAMILTON-JACOB1 FORMULATIONS , 2003 .