Bottom-up structural proteomics: cryoEM of protein complexes enriched from the cellular milieu

[1]  L. Tilley,et al.  The structure of the PA28–20S proteasome complex from Plasmodium falciparum and implications for proteostasis , 2019, Nature Microbiology.

[2]  Yigong Shi,et al.  Structures of the fully assembledSaccharomyces cerevisiaespliceosome before activation , 2019 .

[3]  Yigong Shi,et al.  Recognition of the Amyloid Precursor Protein by Human gamma-secretase , 2019 .

[4]  Yigong Shi,et al.  Recognition of the amyloid precursor protein by human γ-secretase , 2019, Science.

[5]  Yigong Shi,et al.  Structures of the human spliceosomes before and after release of the ligated exon , 2018, bioRxiv.

[6]  Daniel E. Goldberg,et al.  Malaria Parasite Translocon Structure and Mechanism of Effector Export , 2018, Nature.

[7]  Yigong Shi,et al.  Structures of the fully assembled Saccharomyces cerevisiae spliceosome before activation , 2018, Science.

[8]  H. Stark,et al.  Structure and Conformational Dynamics of the Human Spliceosomal Bact Complex , 2018, Cell.

[9]  Shoh M. Asano,et al.  Proteasomes tether to two distinct sites at the nuclear pore complex , 2017, Proceedings of the National Academy of Sciences.

[10]  W. Baumeister,et al.  In situ architecture of the algal nuclear pore complex , 2017, bioRxiv.

[11]  Rui Zhao,et al.  Structure of the yeast spliceosomal postcatalytic P complex , 2017, Science.

[12]  Evan Bolton,et al.  Database resources of the National Center for Biotechnology Information , 2017, Nucleic Acids Res..

[13]  Yanmeng Guo,et al.  Electron cryo-microscopy structure of the mechanotransduction channel NOMPC , 2017, Nature.

[14]  D. Agard,et al.  MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy , 2017, Nature Methods.

[15]  David J. Fleet,et al.  cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination , 2017, Nature Methods.

[16]  W. Baumeister,et al.  Cryo-Electron Tomography: Can it Reveal the Molecular Sociology of Cells in Atomic Detail? , 2016, Trends in cell biology.

[17]  C. Oubridge,et al.  CryoEM structure of the spliceosome immediately after branching , 2016, Nature.

[18]  H. Stark,et al.  Molecular architecture of the human U4/U6.U5 tri-snRNP , 2016, Science.

[19]  Przemyslaw J Porebski,et al.  Protein purification and crystallization artifacts: The tale usually not told , 2016, Protein science : a publication of the Protein Society.

[20]  A. Hyman,et al.  Visualizing the molecular sociology at the HeLa cell nuclear periphery , 2016, Science.

[21]  Shoh M. Asano,et al.  In Situ Cryo-Electron Tomography: A Post-Reductionist Approach to Structural Biology. , 2016, Journal of molecular biology.

[22]  Wladek Minor,et al.  Fitmunk: improving protein structures by accurate, automatic modeling of side-chain conformations , 2016, Acta crystallographica. Section D, Structural biology.

[23]  M. Bogyo,et al.  Structure and function based design of Plasmodium-selective proteasome inhibitors , 2016, Nature.

[24]  C. Oubridge,et al.  CryoEM structure of the yeast U4/U6.U5 tri-snRNP at 3.7 Å resolution , 2016, Nature.

[25]  Huang Gao,et al.  Database resources of the National Center for Biotechnology Information , 2015, Nucleic Acids Res..

[26]  John D. Venable,et al.  ProLuCID: An improved SEQUEST-like algorithm with enhanced sensitivity and specificity. , 2015, Journal of proteomics.

[27]  N. Grigorieff,et al.  CTFFIND4: Fast and accurate defocus estimation from electron micrographs , 2015, bioRxiv.

[28]  Sjors H. W. Scheres,et al.  An atomic structure of human γ-secretase , 2015, Nature.

[29]  Michael J E Sternberg,et al.  The Phyre2 web portal for protein modeling, prediction and analysis , 2015, Nature Protocols.

[30]  Yifan Cheng Single-Particle Cryo-EM at Crystallographic Resolution , 2015, Cell.

[31]  A. Kirkland,et al.  Direct Detectors for Electron Microscopy , 2014 .

[32]  Hemant D. Tagare,et al.  The Local Resolution of Cryo-EM Density Maps , 2013, Nature Methods.

[33]  D. Agard,et al.  Electron counting and beam-induced motion correction enable near atomic resolution single particle cryoEM , 2013, Nature Methods.

[34]  Sjors H.W. Scheres,et al.  RELION: Implementation of a Bayesian approach to cryo-EM structure determination , 2012, Journal of structural biology.

[35]  J. Whisstock,et al.  X-ray crystal structure and specificity of the Plasmodium falciparum malaria aminopeptidase PfM18AAP. , 2012, Journal of molecular biology.

[36]  Richard J. Lavallee,et al.  Optimized fast and sensitive acquisition methods for shotgun proteomics on a quadrupole orbitrap mass spectrometer. , 2012, Journal of proteome research.

[37]  Sjors H.W. Scheres,et al.  A Bayesian View on Cryo-EM Structure Determination , 2012, 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI).

[38]  Ivo Atanasov,et al.  Atomic Structure of Human Adenovirus by Cryo-EM Reveals Interactions Among Protein Networks , 2010, Science.

[39]  Xing Zhang,et al.  3.3 Å Cryo-EM Structure of a Nonenveloped Virus Reveals a Priming Mechanism for Cell Entry , 2010, Cell.

[40]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[41]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[42]  Vincent B. Chen,et al.  Correspondence e-mail: , 2000 .

[43]  R. Henderson,et al.  Detective quantum efficiency of electron area detectors in electron microscopy , 2009, Ultramicroscopy.

[44]  Eileen Kraemer,et al.  PlasmoDB: a functional genomic database for malaria parasites , 2008, Nucleic Acids Res..

[45]  Jeffrey Skolnick,et al.  Fast procedure for reconstruction of full‐atom protein models from reduced representations , 2008, J. Comput. Chem..

[46]  L. Miercke,et al.  Crystal structure of the aquaglyceroporin PfAQP from the malarial parasite Plasmodium falciparum , 2008, Nature Structural &Molecular Biology.

[47]  A. Waters Genome-informed contributions to malaria therapies: feeding somewhere down the (pipe)line. , 2008, Cell host & microbe.

[48]  Liskin Swint-Kruse,et al.  Resmap: automated representation of macromolecular interfaces as two-dimensional networks , 2005, Bioinform..

[49]  John R Yates,et al.  A Comprehensive Survey of the Plasmodium Life Cycle by Genomic, Transcriptomic, and Proteomic Analyses , 2005, Science.

[50]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[51]  Gregory D. Schuler,et al.  Database resources of the National Center for Biotechnology Information: update , 2004, Nucleic acids research.

[52]  Martin A Walsh,et al.  Crystal structure of MboIIA methyltransferase. , 2003, Nucleic acids research.

[53]  Jonathan E. Allen,et al.  Genome sequence of the human malaria parasite Plasmodium falciparum , 2002, Nature.

[54]  J. Yates,et al.  DTASelect and Contrast: tools for assembling and comparing protein identifications from shotgun proteomics. , 2002, Journal of proteome research.

[55]  D Eisenberg,et al.  The crystal structure of phosphinothricin in the active site of glutamine synthetase illuminates the mechanism of enzymatic inhibition. , 2001, Biochemistry.

[56]  D. Eisenberg,et al.  Structure-function relationships of glutamine synthetases. , 2000, Biochimica et biophysica acta.

[57]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[58]  J. Wohlschlegel,et al.  Identification of ubiquitination sites and determination of ubiquitin-chain architectures by mass spectrometry. , 2005, Methods in enzymology.