Sb2Te3 Nanoparticles with Enhanced Seebeck Coefficient and Low Thermal Conductivity

Nanostructured thermoelectric semiconductors represent a promising new direction that can further increase energy conversion efficiency, which requires the realization of thermoelectric nanocrystals with size comparable to their de Broglie wavelength while maintaining a high electrical conductivity. Here, we demonstrate a new facile process to grow self-assembled Sb2Te3 nanoparticles with controlled particle size and enhanced thermoelectric properties by using a catalyst-free vapor transport growth technique. The samples show much more enhanced Seebeck coefficients than that of bulk Sb2Te3 with similar charge carrier concentration. Meanwhile, the thermal conductivity measurements with pulse photothermal reflectance suggest that the these Sb2Te3 nanoparticle films show much reduced thermal conductivity as compared to that of bulk Sb2Te3. The discussed approach is promising for realizing new types of highly efficient thermoelectric semiconductors.

[1]  Stéphane Gorsse,et al.  Microstructure engineering design for thermoelectric materials : an approach to minimize thermal diffusivity , 2010 .

[2]  Andreas Kornowski,et al.  Synthesis and Thermoelectric Characterization of Bi2Te3 Nanoparticles , 2009, 1003.0621.

[3]  Hua Zhang,et al.  Binary‐Phased Nanoparticles for Enhanced Thermoelectric Properties , 2009 .

[4]  H. Hng,et al.  Synthesis and high temperature thermoelectric properties of calcium and cerium double-filled skutterudites Ca0.1CexCo4Sb12 , 2009 .

[5]  Ayusman Sen,et al.  Thermal and electrical conductivity of size-tuned bismuth telluride nanoparticles. , 2009, Small.

[6]  George S. Nolas,et al.  Enhanced Seebeck coefficient through energy-barrier scattering in PbTe nanocomposites , 2009 .

[7]  B. Hay,et al.  Thermal-Diffusivity Measurement of Ceramic Coatings at High Temperature using “Front-Face” and “Rear-Face” Laser Flash Methods , 2009 .

[8]  Bongyoung Yoo,et al.  Recent progress in electrodeposition of thermoelectric thin films and nanostructures , 2008 .

[9]  Ctirad Uher,et al.  Large enhancements in the thermoelectric power factor of bulk PbTe at high temperature by synergistic nanostructuring. , 2008, Angewandte Chemie.

[10]  H. Hng,et al.  A Simple Chemical Approach for PbTe Nanowires with Enhanced Thermoelectric Properties , 2008 .

[11]  N. Muthukumarasamy,et al.  Electrical conduction studies of hot wall deposited CdSexTe1−x thin films , 2008 .

[12]  A. Majumdar,et al.  Enhanced thermopower in PbSe nanocrystal quantum dot superlattices. , 2008, Nano letters.

[13]  E. Toberer,et al.  Improved Thermoelectric Performance in Yb14Mn1-xZnxSb11 by the Reduction of Spin-Disorder Scattering. , 2008 .

[14]  Jianhui Yang,et al.  Hydrothermal Synthesis and Thermoelectric Transport Properties of Impurity‐Free Antimony Telluride Hexagonal Nanoplates , 2008 .

[15]  Hongkun Park,et al.  Vapor-liquid-solid and vapor-solid growth of phase-change Sb2Te3 nanowires and Sb2Te3/GeTe nanowire heterostructures. , 2008, Journal of the American Chemical Society.

[16]  William A. Goddard,et al.  Silicon Nanowires as Efficient Thermoelectric Materials. , 2008 .

[17]  A. Majumdar,et al.  Enhanced Thermoelectric Performance of Rough Silicon Nanowires. , 2008 .

[18]  M. Dresselhaus,et al.  High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys , 2008, Science.

[19]  E. Toberer,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[20]  R. Sathyamoorthy,et al.  Thermal sensors based on Sb2Te3 and (Sb2Te3)70(Bi2Te3)30 thin films , 2008 .

[21]  I. Terasaki,et al.  Dielectric constant and ac conductivity of the layered cobalt oxide Bi 2 Sr 2 CoO 6+δ : A possible metal-dielectric composite made by self-organization of Co 2+ and Co 3+ ions , 2007 .

[22]  M. Dresselhaus,et al.  New Directions for Low‐Dimensional Thermoelectric Materials , 2007 .

[23]  Dmitri V Talapin,et al.  Synergism in binary nanocrystal superlattices leads to enhanced p-type conductivity in self-assembled PbTe/Ag2 Te thin films. , 2007, Nature materials.

[24]  T. Çagin,et al.  Investigation of effective mass of carriers in Bi2Te3/Sb2Te3 superlattices via electronic structure studies on its component crystals , 2006 .

[25]  Dmitri V Talapin,et al.  PbSe Nanocrystal Solids for n- and p-Channel Thin Film Field-Effect Transistors , 2005, Science.

[26]  Dezhi Wang,et al.  High-yield synthesis of single-crystalline antimony telluride hexagonal nanoplates using a solvothermal approach. , 2005, Journal of the American Chemical Society.

[27]  G. Ramanath,et al.  Enhanced Chemical Ordering and Coercivity in FePt Alloy Nanoparticles by Sb‐Doping , 2005 .

[28]  C. Uher,et al.  Transport coefficients of titanium-doped Sb2Te3 single crystals. , 2005 .

[29]  Donald T. Morelli,et al.  Thermopower Enhancement in PbTe with Pb Precipitates , 2005 .

[30]  Timothy P. Hogan,et al.  Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit. , 2004 .

[31]  George C. K. Chen,et al.  Thermal characterization of gallium arsenic nitride epilayer on gallium arsenide substrate using pulsed photothermal reflectance technique , 2004 .

[32]  E. Lavernia,et al.  On the analysis of grain size in bulk nanocrystalline materials via x-ray diffraction , 2003 .

[33]  C. F. Desai,et al.  Sb 2 Te 3 and In 0.2 Sb 1.8 Te 3 : A comparative study of thermoelectric and related properties , 2002 .

[34]  M. P. Walsh,et al.  Quantum Dot Superlattice Thermoelectric Materials and Devices , 2002, Science.

[35]  R. Venkatasubramanian,et al.  Thin-film thermoelectric devices with high room-temperature figures of merit , 2001, Nature.

[36]  Ping Hui,et al.  Pulsed photothermal modeling of composite samples based on transmission-line theory of heat conduction , 1999 .

[37]  George H. Gilmer,et al.  An atomistic simulator for thin film deposition in three dimensions , 1998 .

[38]  J. Tersoff,et al.  Coarsening of Self-Assembled Ge Quantum Dots on Si(001) , 1998 .

[39]  T. Groshens,et al.  Room-Temperature MOCVD of Sb2Te3 Films and Solution Precipitation of M2Te3 (M: Sb, Bi) Powders via a Novel (N,N-Dimethylamino) trimethylsilane Elimination Reaction. , 1994 .

[40]  H. Löhneysen,et al.  Effect of substrate temperature on the microstructure of thin niobium films , 1994 .

[41]  Max G. Lagally,et al.  KINETIC PATHWAY IN STRANSKI-KRASTANOV GROWTH OF Ge ON Si(001) , 1990 .

[42]  Gang Chen,et al.  Chemical synthesis of anisotropic nanocrystalline Sb2Te3 and low thermal conductivity of the compacted dense bulk. , 2008, Journal of nanoscience and nanotechnology.