A triangular cut-cell adaptive method for high-order discretizations of the compressible Navier-Stokes equations
暂无分享,去创建一个
[1] K. Powell,et al. Solution-Adaptive Cartesian Cell Approach for Viscous and Inviscid Flows , 1996 .
[2] James Lu,et al. An a posteriori Error Control Framework for Adaptive Precision Optimization using Discontinuous Galerkin Finite Element Method , 2005 .
[3] T. Pulliam,et al. Adjoint Formulation for an Embedded-Boundary Cartesian Method , 2005 .
[4] Thomas H. Pulliam,et al. CAD-Based Aerodynamic Design of Complex Configurations using a Cartesian Method , 2004 .
[5] Endre Süli,et al. DISCONTINUOUS GALERKIN METHODS FOR FIRST-ORDER HYPERBOLIC PROBLEMS , 2004 .
[6] S. Rebay,et al. Numerical evaluation of two discontinuous Galerkin methods for the compressible Navier–Stokes equations , 2002 .
[7] B. Wedan,et al. A method for solving the transonic full-potential equation for general configurations , 1983 .
[8] Richard H. Burkhart,et al. A new approach to the solution of boundary value problems involving complex configurations , 1986 .
[9] R. Hartmann,et al. Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations , 2002 .
[10] Rolf Rannacher,et al. An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.
[11] Rolf Rannacher,et al. A Feed-Back Approach to Error Control in Finite Element Methods: Basic Analysis and Examples , 1996 .
[12] Paul-Louis George,et al. Mailleur bidimensionnel de Delaunay gouverné par une carte de métriques. Partie II: Applications , 1995 .
[13] O. C. Zienkiewicz,et al. Adaptive remeshing for compressible flow computations , 1987 .
[14] M. Giles,et al. Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality , 2002, Acta Numerica.
[15] David L. Darmofal,et al. p-Multigrid solution of high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations , 2005 .
[16] Leszek Demkowicz,et al. Goal-oriented hp-adaptivity for elliptic problems , 2004 .
[17] Michael B. Giles,et al. Solution Adaptive Mesh Refinement Using Adjoint Error Analysis , 2001 .
[18] Juan J. Alonso,et al. Applications of a Cartesian Mesh Boundary-Layer Approach for Complex Configurations , 2006 .
[19] A. Brandt. Guide to multigrid development , 1982 .
[20] T. Papanastasiou,et al. Viscous Fluid Flow , 1999 .
[21] Edward N. Tinoco,et al. Summary of Data from the Second AIAA CFD Drag Prediction Workshop (Invited) , 2004 .
[22] D. Darmofal,et al. Discontinuous Galerkin solutions of the Navier-Stokes Equations using Linear Multigrid Preconditioning , 2007 .
[23] Todd A. Oliver. Multigrid Solution for High-Order Discontinuous Galerkin Discretizations of the Compressible Navier-Stokes Equations , 2004 .
[24] Bharat K. Soni,et al. Handbook of Grid Generation , 1998 .
[25] Randall J. LeVeque,et al. A Cartesian Grid Finite-Volume Method for the Advection-Diffusion Equation in Irregular Geometries , 2000 .
[26] R. LeVeque,et al. An Adaptive Cartesian Mesh Algorithm for the Euler Equations in Arbitrary Geometries , 1989 .
[27] Dominique Pelletier,et al. Mesh adaptation using different error indicators for the Euler equations , 2001 .
[28] S. Rebay,et al. GMRES Discontinuous Galerkin Solution of the Compressible Navier-Stokes Equations , 2000 .
[29] Randall J. LeVeque,et al. A large Time Step Generalization of Godunov’s Method for Systems of Conservation Laws , 1985 .
[30] Rolf Jeltsch,et al. A Higher-Order Boundary Treatment for Cartesian-Grid Methods , 1998 .
[31] John B. Bell,et al. Cartesian grid method for unsteady compressible flow in irregular regions , 1995 .
[32] D. D. Zeeuw,et al. An adaptively refined Cartesian mesh solver for the Euler equations , 1993 .
[33] Rolf Rannacher,et al. Adaptive Galerkin finite element methods for partial differential equations , 2001 .
[34] William N. Dawes,et al. Reducing Bottlenecks in the CAD-to-Mesh-to-Solution Cycle Time to Allow CFD to Participate in Design , 2000 .
[35] D. Mavriplis. An assessment of linear versus non-linear multigrid methods for unstructured mesh solvers , 2001 .
[36] Venkat Venkatakrishnan,et al. Higher Order Schemes for the Compressible Navier-Stokes Equations , 2003 .
[37] J. Oden,et al. hp-Version discontinuous Galerkin methods for hyperbolic conservation laws , 1996 .
[38] J. W. Purvis,et al. Prediction of critical Mach number for store configurations , 1979 .
[39] Joseph H. Morrison,et al. Statistical Analysis of CFD Solutions from the Third AIAA Drag Prediction Workshop (Invited) , 2007 .
[40] M. D. Salas,et al. Euler calculations for multielement airfoils using Cartesian grids , 1986 .
[41] John C. Vassberg,et al. Grid Generation Requirements for Accurate Drag Predictions Based on OVERFLOW Calculations , 2003 .
[42] O. C. Zienkiewicz,et al. Adaptivity and mesh generation , 1991 .
[43] Michael J. Aftosmis,et al. Adaptive Cartesian mesh generation , 1998 .
[44] Francis Y. Enomoto,et al. 3D automatic Cartesian grid generation for Euler flows , 1993 .
[45] Mats G. Larson,et al. A posteriori eror estimation for higher order Godunov finite volume methods on unstructured meshes , 2002 .
[46] H. P.,et al. An Introduction to Celestial Mechanics , 1914, Nature.
[47] J LeVequeRandall,et al. A Cartesian Grid Finite-Volume Method for the Advection-Diffusion Equation in Irregular Geometries , 2000 .
[48] D. Venditti,et al. Grid adaptation for functional outputs: application to two-dimensional inviscid flows , 2002 .
[49] R. LeVeque. Approximate Riemann Solvers , 1992 .
[50] M. Giles,et al. Adjoint Error Correction for Integral Outputs , 2003 .
[51] Frédéric Hecht,et al. Anisotropic unstructured mesh adaption for flow simulations , 1997 .
[52] E. Süli,et al. A note on the design of hp-adaptive finite element methods for elliptic partial differential equations , 2005 .
[53] Krzysztof J. Fidkowski,et al. A high-order discontinuous Galerkin multigrid solver for aerodynamic applications , 2004 .
[54] Lévêque,et al. High resolution finite volume methods on arbitrary grids via wave propagation. Final report , 1988 .
[55] Steven M. Klausmeyer,et al. Data summary from the first AIAA Computational Fluid Dynamics Drag Prediction Workshop , 2003 .
[56] O. Brodersen,et al. Drag Prediction of Engine -Airframe Interference Effects Using Unstructured Navier -Stokes Calculations , 2001 .
[57] Yoshiaki Nakamura,et al. Anisotropic Cartesian grid adaptation , 2000 .
[58] Kenneth J. Hill. Matrix-based Ellipse Geometry , 1995 .
[59] F. Bassi,et al. High-Order Accurate Discontinuous Finite Element Solution of the 2 D Euler Equations , 1998 .
[60] Stefano Giani,et al. Anisotropic hp-adaptive discontinuous Galerkin finite element methods for compressible fluid flows. , 2001 .
[61] Anthony T. Patera,et al. A posteriori finite-element output bounds for the incompressible Navier-Stokes equations: application to a natural convection problem , 2001 .
[62] Richard L. Gaffney,et al. Euler calculations for wings using Cartesian grids , 1987 .
[63] David Anthony Venditti,et al. Grid adaptation for functional outputs of compressible flow simulations , 2000 .
[64] D. P. Young,et al. A locally refined rectangular grid finite element method: application to computational fluid dynamics and computational physics , 1990 .
[65] D. Venditti,et al. Anisotropic grid adaptation for functional outputs: application to two-dimensional viscous flows , 2003 .
[66] Dimitri J. Mavriplis,et al. Results from the 3rd Drag Prediction Workshop Using the NSU3D Unstructured Mesh Solver , 2007 .
[67] P. Roe. Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .
[68] Yoshiaki Nakamura,et al. A new method for thin body problem in Cartesian grid generation , 1999 .
[69] Steve L. Karman,et al. SPLITFLOW - A 3D unstructured Cartesian/prismatic grid CFD code for complex geometries , 1995 .
[70] David L. Darmofal,et al. Output-based Adaptive Meshing Using Triangular Cut Cells , 2006 .
[71] Paul-Louis George,et al. Mailleur bidimensionnel de Delaunay gouverné par une carte de métriques. Partie I: Algorithmes , 1995 .
[72] Chi-Wang Shu,et al. Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..
[73] J. Quirk. An alternative to unstructured grids for computing gas dynamic flows around arbitrarily complex two-dimensional bodies , 1994 .
[74] Scott M. Murman,et al. Characterization of Space Shuttle Ascent Debris Aerodynamics Using CFD Methods , 2005 .
[75] M. Fortin,et al. Anisotropic mesh adaptation: towards user‐independent, mesh‐independent and solver‐independent CFD. Part I: general principles , 2000 .
[76] M. Aftosmis. Solution adaptive cartesian grid methods for aerodynamic flows with complex geometries , 1997 .
[77] Ralf Hartmann,et al. Goal-Oriented A Posteriori Error Estimation for Multiple Target Functionals , 2003 .
[78] Endre Süli,et al. hp-Version discontinuous Galerkin methods with interior penalty for partial differential equations with nonnegative characteristic form. , 2002 .
[79] Michael B. Giles,et al. Adjoint Recovery of Superconvergent Functionals from PDE Approximations , 2000, SIAM Rev..
[80] Barna A. Szabó,et al. Estimation and Control Error Based on P-Convergence, , 1984 .