A triangular cut-cell adaptive method for high-order discretizations of the compressible Navier-Stokes equations

This paper presents a mesh adaptation method for higher-order (p>1) discontinuous Galerkin (DG) discretizations of the two-dimensional, compressible Navier-Stokes equations. A key feature of this method is a cut-cell meshing technique, in which the triangles are not required to conform to the boundary. This approach permits anisotropic adaptation without the difficulty of constructing meshes that conform to potentially complex geometries. A quadrature technique is proposed for accurately integrating on general cut cells. In addition, an output-based error estimator and adaptive method are presented, appropriately accounting for high-order solution spaces in optimizing local mesh anisotropy. Accuracy on cut-cell meshes is demonstrated by comparing solutions to those on standard, boundary-conforming meshes. Robustness of the cut-cell and adaptation technique is successfully tested for highly anisotropic boundary-layer meshes representative of practical high Re simulations. Furthermore, adaptation results show that, for all test cases considered, p=2 and p=3 discretizations meet desired error tolerances using fewer degrees of freedom than p=1.

[1]  K. Powell,et al.  Solution-Adaptive Cartesian Cell Approach for Viscous and Inviscid Flows , 1996 .

[2]  James Lu,et al.  An a posteriori Error Control Framework for Adaptive Precision Optimization using Discontinuous Galerkin Finite Element Method , 2005 .

[3]  T. Pulliam,et al.  Adjoint Formulation for an Embedded-Boundary Cartesian Method , 2005 .

[4]  Thomas H. Pulliam,et al.  CAD-Based Aerodynamic Design of Complex Configurations using a Cartesian Method , 2004 .

[5]  Endre Süli,et al.  DISCONTINUOUS GALERKIN METHODS FOR FIRST-ORDER HYPERBOLIC PROBLEMS , 2004 .

[6]  S. Rebay,et al.  Numerical evaluation of two discontinuous Galerkin methods for the compressible Navier–Stokes equations , 2002 .

[7]  B. Wedan,et al.  A method for solving the transonic full-potential equation for general configurations , 1983 .

[8]  Richard H. Burkhart,et al.  A new approach to the solution of boundary value problems involving complex configurations , 1986 .

[9]  R. Hartmann,et al.  Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations , 2002 .

[10]  Rolf Rannacher,et al.  An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.

[11]  Rolf Rannacher,et al.  A Feed-Back Approach to Error Control in Finite Element Methods: Basic Analysis and Examples , 1996 .

[12]  Paul-Louis George,et al.  Mailleur bidimensionnel de Delaunay gouverné par une carte de métriques. Partie II: Applications , 1995 .

[13]  O. C. Zienkiewicz,et al.  Adaptive remeshing for compressible flow computations , 1987 .

[14]  M. Giles,et al.  Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality , 2002, Acta Numerica.

[15]  David L. Darmofal,et al.  p-Multigrid solution of high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations , 2005 .

[16]  Leszek Demkowicz,et al.  Goal-oriented hp-adaptivity for elliptic problems , 2004 .

[17]  Michael B. Giles,et al.  Solution Adaptive Mesh Refinement Using Adjoint Error Analysis , 2001 .

[18]  Juan J. Alonso,et al.  Applications of a Cartesian Mesh Boundary-Layer Approach for Complex Configurations , 2006 .

[19]  A. Brandt Guide to multigrid development , 1982 .

[20]  T. Papanastasiou,et al.  Viscous Fluid Flow , 1999 .

[21]  Edward N. Tinoco,et al.  Summary of Data from the Second AIAA CFD Drag Prediction Workshop (Invited) , 2004 .

[22]  D. Darmofal,et al.  Discontinuous Galerkin solutions of the Navier-Stokes Equations using Linear Multigrid Preconditioning , 2007 .

[23]  Todd A. Oliver Multigrid Solution for High-Order Discontinuous Galerkin Discretizations of the Compressible Navier-Stokes Equations , 2004 .

[24]  Bharat K. Soni,et al.  Handbook of Grid Generation , 1998 .

[25]  Randall J. LeVeque,et al.  A Cartesian Grid Finite-Volume Method for the Advection-Diffusion Equation in Irregular Geometries , 2000 .

[26]  R. LeVeque,et al.  An Adaptive Cartesian Mesh Algorithm for the Euler Equations in Arbitrary Geometries , 1989 .

[27]  Dominique Pelletier,et al.  Mesh adaptation using different error indicators for the Euler equations , 2001 .

[28]  S. Rebay,et al.  GMRES Discontinuous Galerkin Solution of the Compressible Navier-Stokes Equations , 2000 .

[29]  Randall J. LeVeque,et al.  A large Time Step Generalization of Godunov’s Method for Systems of Conservation Laws , 1985 .

[30]  Rolf Jeltsch,et al.  A Higher-Order Boundary Treatment for Cartesian-Grid Methods , 1998 .

[31]  John B. Bell,et al.  Cartesian grid method for unsteady compressible flow in irregular regions , 1995 .

[32]  D. D. Zeeuw,et al.  An adaptively refined Cartesian mesh solver for the Euler equations , 1993 .

[33]  Rolf Rannacher,et al.  Adaptive Galerkin finite element methods for partial differential equations , 2001 .

[34]  William N. Dawes,et al.  Reducing Bottlenecks in the CAD-to-Mesh-to-Solution Cycle Time to Allow CFD to Participate in Design , 2000 .

[35]  D. Mavriplis An assessment of linear versus non-linear multigrid methods for unstructured mesh solvers , 2001 .

[36]  Venkat Venkatakrishnan,et al.  Higher Order Schemes for the Compressible Navier-Stokes Equations , 2003 .

[37]  J. Oden,et al.  hp-Version discontinuous Galerkin methods for hyperbolic conservation laws , 1996 .

[38]  J. W. Purvis,et al.  Prediction of critical Mach number for store configurations , 1979 .

[39]  Joseph H. Morrison,et al.  Statistical Analysis of CFD Solutions from the Third AIAA Drag Prediction Workshop (Invited) , 2007 .

[40]  M. D. Salas,et al.  Euler calculations for multielement airfoils using Cartesian grids , 1986 .

[41]  John C. Vassberg,et al.  Grid Generation Requirements for Accurate Drag Predictions Based on OVERFLOW Calculations , 2003 .

[42]  O. C. Zienkiewicz,et al.  Adaptivity and mesh generation , 1991 .

[43]  Michael J. Aftosmis,et al.  Adaptive Cartesian mesh generation , 1998 .

[44]  Francis Y. Enomoto,et al.  3D automatic Cartesian grid generation for Euler flows , 1993 .

[45]  Mats G. Larson,et al.  A posteriori eror estimation for higher order Godunov finite volume methods on unstructured meshes , 2002 .

[46]  H. P.,et al.  An Introduction to Celestial Mechanics , 1914, Nature.

[47]  J LeVequeRandall,et al.  A Cartesian Grid Finite-Volume Method for the Advection-Diffusion Equation in Irregular Geometries , 2000 .

[48]  D. Venditti,et al.  Grid adaptation for functional outputs: application to two-dimensional inviscid flows , 2002 .

[49]  R. LeVeque Approximate Riemann Solvers , 1992 .

[50]  M. Giles,et al.  Adjoint Error Correction for Integral Outputs , 2003 .

[51]  Frédéric Hecht,et al.  Anisotropic unstructured mesh adaption for flow simulations , 1997 .

[52]  E. Süli,et al.  A note on the design of hp-adaptive finite element methods for elliptic partial differential equations , 2005 .

[53]  Krzysztof J. Fidkowski,et al.  A high-order discontinuous Galerkin multigrid solver for aerodynamic applications , 2004 .

[54]  Lévêque,et al.  High resolution finite volume methods on arbitrary grids via wave propagation. Final report , 1988 .

[55]  Steven M. Klausmeyer,et al.  Data summary from the first AIAA Computational Fluid Dynamics Drag Prediction Workshop , 2003 .

[56]  O. Brodersen,et al.  Drag Prediction of Engine -Airframe Interference Effects Using Unstructured Navier -Stokes Calculations , 2001 .

[57]  Yoshiaki Nakamura,et al.  Anisotropic Cartesian grid adaptation , 2000 .

[58]  Kenneth J. Hill Matrix-based Ellipse Geometry , 1995 .

[59]  F. Bassi,et al.  High-Order Accurate Discontinuous Finite Element Solution of the 2 D Euler Equations , 1998 .

[60]  Stefano Giani,et al.  Anisotropic hp-adaptive discontinuous Galerkin finite element methods for compressible fluid flows. , 2001 .

[61]  Anthony T. Patera,et al.  A posteriori finite-element output bounds for the incompressible Navier-Stokes equations: application to a natural convection problem , 2001 .

[62]  Richard L. Gaffney,et al.  Euler calculations for wings using Cartesian grids , 1987 .

[63]  David Anthony Venditti,et al.  Grid adaptation for functional outputs of compressible flow simulations , 2000 .

[64]  D. P. Young,et al.  A locally refined rectangular grid finite element method: application to computational fluid dynamics and computational physics , 1990 .

[65]  D. Venditti,et al.  Anisotropic grid adaptation for functional outputs: application to two-dimensional viscous flows , 2003 .

[66]  Dimitri J. Mavriplis,et al.  Results from the 3rd Drag Prediction Workshop Using the NSU3D Unstructured Mesh Solver , 2007 .

[67]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[68]  Yoshiaki Nakamura,et al.  A new method for thin body problem in Cartesian grid generation , 1999 .

[69]  Steve L. Karman,et al.  SPLITFLOW - A 3D unstructured Cartesian/prismatic grid CFD code for complex geometries , 1995 .

[70]  David L. Darmofal,et al.  Output-based Adaptive Meshing Using Triangular Cut Cells , 2006 .

[71]  Paul-Louis George,et al.  Mailleur bidimensionnel de Delaunay gouverné par une carte de métriques. Partie I: Algorithmes , 1995 .

[72]  Chi-Wang Shu,et al.  Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..

[73]  J. Quirk An alternative to unstructured grids for computing gas dynamic flows around arbitrarily complex two-dimensional bodies , 1994 .

[74]  Scott M. Murman,et al.  Characterization of Space Shuttle Ascent Debris Aerodynamics Using CFD Methods , 2005 .

[75]  M. Fortin,et al.  Anisotropic mesh adaptation: towards user‐independent, mesh‐independent and solver‐independent CFD. Part I: general principles , 2000 .

[76]  M. Aftosmis Solution adaptive cartesian grid methods for aerodynamic flows with complex geometries , 1997 .

[77]  Ralf Hartmann,et al.  Goal-Oriented A Posteriori Error Estimation for Multiple Target Functionals , 2003 .

[78]  Endre Süli,et al.  hp-Version discontinuous Galerkin methods with interior penalty for partial differential equations with nonnegative characteristic form. , 2002 .

[79]  Michael B. Giles,et al.  Adjoint Recovery of Superconvergent Functionals from PDE Approximations , 2000, SIAM Rev..

[80]  Barna A. Szabó,et al.  Estimation and Control Error Based on P-Convergence, , 1984 .