Medium range order and the radial distribution function

[1]  V. A. Levashov,et al.  Density fluctuations and the pair distribution function , 2005 .

[2]  F. Albano,et al.  Shear softening and structure in a simulated three-dimensional binary glass. , 2005, The Journal of chemical physics.

[3]  J. Kieffer,et al.  Amorphous-amorphous transitions in silica glass. I. Reversible transitions and thermomechanical anomalies , 2004 .

[4]  J. Kieffer,et al.  Amorphous-amorphous transitions in silica glass. II. Irreversible transitions and densification limit , 2004 .

[5]  Weihua Wang,et al.  Bulk metallic glasses , 2004 .

[6]  P. Voyles,et al.  A quantitative measure of medium-range order in amorphous materials from transmission electron micrographs , 2003 .

[7]  Paul M. Voyles,et al.  Structure and physical properties of paracrystalline atomistic models of amorphous silicon , 2001 .

[8]  Gibson,et al.  Atom pair persistence in disordered materials from fluctuation microscopy , 2000, Ultramicroscopy.

[9]  S. Phillpot,et al.  Exact method for the simulation of Coulombic systems by spherically truncated, pairwise r−1 summation , 1999 .

[10]  H. Jin,et al.  Structural disorder induced in hydrogenated amorphous silicon by light soaking , 1998 .

[11]  M. Treacy,et al.  Paracrystallites found in evaporated amorphous tetrahedral semiconductors , 1998 .

[12]  T. Gotoh,et al.  EXPERIMENTAL EVIDENCE OF PHOTOINDUCED EXPANSION IN HYDROGENATED AMORPHOUS SILICON USING BENDING DETECTED OPTICAL LEVER METHOD , 1998 .

[13]  E. Kaxiras,et al.  Environment-dependent interatomic potential for bulk silicon , 1997, cond-mat/9704137.

[14]  S. Phillpot,et al.  Amorphous structure of grain boundaries and grain junctions in nanocrystalline silicon by molecular-dynamics simulation , 1997 .

[15]  M. Treacy,et al.  Variable Coherence Microscopy: a Rich Source of Structural Information from Disordered Materials , 1996 .

[16]  D. Masson,et al.  Long-range structural relaxation in the Staebler-Wronski effect , 1995 .

[17]  Nelson,et al.  Infrared absorption strength and hydrogen content of hydrogenated amorphous silicon. , 1992, Physical review. B, Condensed matter.

[18]  G. A. Martynov Fundamental Theory of Liquids, Method of Distribution Functions , 1992 .

[19]  Beeman,et al.  Dynamics of tetrahedral networks: Amorphous Si and Ge. , 1988, Physical review. B, Condensed matter.

[20]  Beeman,et al.  Structural information from the Raman spectrum of amorphous silicon. , 1985, Physical review. B, Condensed matter.

[21]  A. Wright,et al.  A neutron diffraction study of the structure of evaporated amorphous germanium , 1982 .

[22]  D. Staebler,et al.  Reversible conductivity changes in discharge‐produced amorphous Si , 1977 .

[23]  R. Temkin,et al.  Amorphous germanium II. Structural properties , 1973 .

[24]  S. C. Moss,et al.  Evidence of Voids Within the As-Deposited Structure of Glassy Silicon , 1969 .

[25]  W. Zachariasen,et al.  THE ATOMIC ARRANGEMENT IN GLASS , 1932 .

[26]  D. L. Williamson,et al.  Nanostructure of a-Si:H and Related Materials by Small-Angle X-Ray Scattering , 1995 .

[27]  J. Kakalios,et al.  Light-induced changes of the non-Gaussian 1/f noise statistics in doped hydrogenated amorphous silicon , 1994 .

[28]  S. Elliott The structure of amorphous hydrogenated silicon and its alloys: A review , 1989 .

[29]  Stanford R. Ovshinsky,et al.  Physics of Disordered Materials , 1985 .