Particle Aspect-Ratio Effects on the Thermal Conductivity of Micro- and Nanoparticle Suspensions

The influence of particle anisotropy on the effective thermal conductivity of a suspension is experimentally investigated. Suspensions of micron-sized, silicon-carbide particles with varying aspect-ratio distributions were prepared and measured. It is shown that the conductivity of the silicon-carbide suspensions can be quantitatively predicted by the effective medium theory of Nan et al. (1997, "Effective Thermal Conductivity of Particulate Composites With Interfacial Thermal Resistance," J. Appl. Phys. 81(10), pp. 6692-6699), provided the volume-weighted aspect ratio of the particles is used. Recent experimental data on multiwalled-nanotube-in-oil suspensions by Yang et al. (2006, "Thermal and Rheological Properties of Carbon Nanotube-in-Oil Dispersions," J. Appl. Phys., 99(11), 114307) are also analyzed and shown to be in at least qualitative agreement with the effective-medium-theory prediction that the thermal conductivity of suspensions is enhanced by large aspect-ratio particles.

[1]  Dongsik Kim,et al.  Thermal Conductivity of AlN and SiC Thin Films , 2006 .

[2]  S. Phillpot,et al.  Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids) , 2002 .

[3]  E. Grulke,et al.  Anomalous thermal conductivity enhancement in nanotube suspensions , 2001 .

[4]  William W. Yu,et al.  ANOMALOUSLY INCREASED EFFECTIVE THERMAL CONDUCTIVITIES OF ETHYLENE GLYCOL-BASED NANOFLUIDS CONTAINING COPPER NANOPARTICLES , 2001 .

[5]  Sarit K. Das,et al.  Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: Manifestation of anomalous enhancement and chemical effects , 2003 .

[6]  Karl Schulte,et al.  Agglomeration and electrical percolation behavior of carbon black dispersed in epoxy resin , 1997 .

[7]  F. Ai,et al.  Thermal conductivity of suspension containing SiC particles , 2002 .

[8]  Kwon,et al.  Unusually high thermal conductivity of carbon nanotubes , 2000, Physical review letters.

[9]  Rishi Raj,et al.  The effect of particle size on the thermal conductivity of ZnS/diamond composites , 1992 .

[10]  Yuanhua Lin,et al.  Interface effect on thermal conductivity of carbon nanotube composites , 2004 .

[11]  Q. Xue,et al.  Model for the effective thermal conductivity of carbon nanotube composites , 2006, Nanotechnology.

[12]  P. Meakin,et al.  Effect of aggregation on thermal conduction in colloidal nanofluids , 2006 .

[13]  B. Yang,et al.  Temperature-dependent thermal conductivity of nanorod-based nanofluids , 2006 .

[14]  W. Goddard,et al.  Thermal conductivity of carbon nanotubes , 2000 .

[15]  Pawel Keblinski,et al.  Role of thermal boundary resistance on the heat flow in carbon-nanotube composites , 2004 .

[16]  R. Prasher,et al.  Enhanced mass transport in nanofluids. , 2006, Nano letters.

[17]  C. Nan,et al.  Effective thermal conductivity of particulate composites with interfacial thermal resistance , 1997 .

[18]  Scott T. Huxtable,et al.  Interfacial heat flow in carbon nanotube suspensions , 2003, Nature materials.

[19]  C. Nan,et al.  A simple model for thermal conductivity of carbon nanotube-based composites , 2003 .

[20]  R. Prasher,et al.  Thermal conductivity of nanoscale colloidal solutions (nanofluids). , 2005, Physical review letters.

[21]  Orla M. Wilson,et al.  Colloidal metal particles as probes of nanoscale thermal transport in fluids , 2002 .

[22]  H. Fricke,et al.  A Mathematical Treatment of the Electric Conductivity and Capacity of Disperse Systems I. The Electric Conductivity of a Suspension of Homogeneous Spheroids , 1924 .

[23]  G. A. Slack,et al.  Thermal Conductivity of Pure and Impure Silicon, Silicon Carbide, and Diamond , 1964 .

[24]  R. Prasher,et al.  Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid). , 2006, Nano letters.

[25]  Frank Kreith,et al.  The CRC handbook of mechanical engineering , 1998 .

[26]  T. Choi,et al.  Measurement of the thermal conductivity of individual carbon nanotubes by the four-point three-ω method , 2006 .

[27]  Y. Katoh,et al.  Handbook of SiC properties for fuel performance modeling , 2007 .

[28]  A. Rao,et al.  Continuous production of aligned carbon nanotubes: a step closer to commercial realization , 1999 .

[29]  E. Grulke,et al.  Thermal and rheological properties of carbon nanotube-in-oil dispersions , 2006 .

[30]  Impact of nonequilibrium between electrons and phonons on heat transfer in metallic nanoparticles suspended in dielectric media , 2005 .

[31]  L. Gao,et al.  Effective thermal conductivity in nanofluids of nonspherical particles with interfacial thermal resistance: Differential effective medium theory , 2006 .

[32]  D. Klingenberg,et al.  Thermal transport in sheared electro- and magnetorheological fluids , 2006 .

[33]  J. Maxwell A Treatise on Electricity and Magnetism , 1873, Nature.

[34]  C. Henager,et al.  Thermal conductivities of thin, sputtered optical films. , 1993, Applied optics.