Analysis and applications of a generalized finite element method with global-local enrichment functions

This paper presents a procedure to build enrichment functions for partition of unity methods like the generalized finite element method and the hp cloud method. The procedure combines classical global–local finite element method concepts with the partition of unity approach. It involves the solution of local boundary value problems using boundary conditions from a global problem defined on a coarse discretization. The local solutions are in turn used to enrich the global space using the partition of unity framework. The computations at local problems can be parallelized without difficulty allowing the solution of large problems very efficiently. The effectiveness of the approach in terms of convergence rates and computational cost is investigated in this paper. We also analyze the effect of inexact boundary conditions applied to local problems and the size of the local domains on the accuracy of the enriched global solution. Key aspects of the computational implementation, in particular, the numerical integration of generalized FEM approximations built with global–local enrichment functions, are presented. The method is applied to fracture mechanics problems with multiple cracks in the domain. Our numerical experiments show that even on a serial computer the method is very effective and allows the solution of complex problems. Our analysis also demonstrates that the accuracy of a global problem defined on a coarse mesh can be controlled using a fixed number of global degrees of freedom and the proposed global–local enrichment functions.

[1]  Jacques-Louis Lions,et al.  Nonlinear partial differential equations and their applications , 1998 .

[2]  P. Hansbo,et al.  A finite element method for domain decomposition with non-matching grids , 2003 .

[3]  C. Bernardi,et al.  A New Nonconforming Approach to Domain Decomposition : The Mortar Element Method , 1994 .

[4]  T. Belytschko,et al.  MODELING HOLES AND INCLUSIONS BY LEVEL SETS IN THE EXTENDED FINITE-ELEMENT METHOD , 2001 .

[5]  J. Fish The s-version of the finite element method , 1992 .

[6]  Ivo Babuška,et al.  A Global-Local Approach for the Construction of Enrichment Functions for the Generalized FEM and Its Application to Three-Dimensional Cracks , 2007 .

[7]  Juhani Pitkäranta,et al.  Boundary subspaces for the finite element method with Lagrange multipliers , 1979 .

[8]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[9]  Jin-U Park,et al.  Efficient finite element analysis using mesh superposition technique , 2003 .

[10]  Barbara Wohlmuth,et al.  A new dual mortar method for curved interfaces: 2D elasticity , 2005 .

[11]  Faker Ben Belgacem,et al.  The Mortar finite element method with Lagrange multipliers , 1999, Numerische Mathematik.

[12]  I. Babuska The finite element method with Lagrangian multipliers , 1973 .

[13]  G. N. Labeas,et al.  Stress intensity factors of semi-elliptical surface cracks in pressure vessels by global-local finite element methodology , 2005 .

[14]  Barry Smith,et al.  Domain Decomposition Methods for Partial Differential Equations , 1997 .

[15]  André Vinicius Celani Duarte,et al.  A discontinuous finite element-based domain decomposition method , 2000 .

[16]  T. Belytschko,et al.  Non‐planar 3D crack growth by the extended finite element and level sets—Part I: Mechanical model , 2002 .

[17]  Barbara Wohlmuth A COMPARISON OF DUAL LAGRANGE MULTIPLIER SPACES FOR MORTAR FINITE ELEMENT DISCRETIZATIONS , 2002 .

[18]  Ivo Babuška,et al.  Generalized finite element methods for three-dimensional structural mechanics problems , 2000 .

[19]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[20]  J. Oden,et al.  H‐p clouds—an h‐p meshless method , 1996 .

[21]  John Robert Whiteman,et al.  The mathematics of finite elements and applications : highlights 1993 , 1994 .

[22]  Bodo Heise Analysis of a fully discrete finite element method for a nonlinear magnetic field problem , 1994 .

[23]  D. Griffin,et al.  Finite-Element Analysis , 1975 .

[24]  Ted Belytschko,et al.  Discontinuous enrichment in finite elements with a partition of unity method , 2000 .

[25]  T. Liszka,et al.  A generalized finite element method for the simulation of three-dimensional dynamic crack propagation , 2001 .

[26]  Ted Belytschko,et al.  Combined extended and superimposed finite element method for cracks , 2004 .

[27]  Eric de Sturler,et al.  Recycling Krylov Subspaces for Sequences of Linear Systems , 2006, SIAM J. Sci. Comput..

[28]  J. Oden,et al.  Solution of Singular Problems Using h-p Clouds , 1996 .

[29]  Barry F. Smith,et al.  Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .

[30]  Ivo Babuska,et al.  The Splitting Method as a Tool for Multiple Damage Analysis , 2005, SIAM J. Sci. Comput..

[31]  Eberhard Bänsch,et al.  Local mesh refinement in 2 and 3 dimensions , 1991, IMPACT Comput. Sci. Eng..

[32]  E. N. Dancer ELLIPTIC PROBLEMS IN DOMAINS WITH PIECEWISE SMOOTH BOUNDARIES (de Gruyter Expositions in Mathematics 13) , 1996 .

[33]  Ahmed K. Noor,et al.  Global-local methodologies and their application to nonlinear analysis , 1986 .

[34]  J. Z. Zhu,et al.  The finite element method , 1977 .

[35]  I. Babuska,et al.  Acta Numerica 2003: Survey of meshless and generalized finite element methods: A unified approach , 2003 .

[36]  Jean-François Remacle,et al.  A computational approach to handle complex microstructure geometries , 2003 .

[37]  Ivo Babuška,et al.  p‐version of the generalized FEM using mesh‐based handbooks with applications to multiscale problems , 2004 .

[38]  T. Belytschko,et al.  Extended finite element method for three-dimensional crack modelling , 2000 .

[39]  Oden,et al.  An h-p adaptive method using clouds , 1996 .

[40]  B. Plamenevskii,et al.  Elliptic Problems in Domains with Piecewise Smooth Boundaries , 1994 .

[41]  Thomas Y. Hou,et al.  A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .

[42]  I. Babuska,et al.  The partition of unity finite element method , 1996 .

[43]  Carlos Armando Duarte,et al.  A Generalized Finite Element Method for polycrystals with discontinuous grain boundaries , 2006 .

[44]  C. Felippa,et al.  A simple algorithm for localized construction of non‐matching structural interfaces , 2002 .

[45]  I. Babuska,et al.  The generalized finite element method , 2001 .

[46]  I. Babuska,et al.  Generalized finite element method using mesh-based handbooks: application to problems in domains with many voids , 2003 .

[47]  I. Babuška,et al.  Mesh-independent directional p-enrichment using the generalized finite element method , 2001 .

[48]  P. Grisvard Singularities in Boundary Value Problems , 1992 .

[49]  Douglas N. Arnold,et al.  Locally Adapted Tetrahedral Meshes Using Bisection , 2000, SIAM J. Sci. Comput..

[50]  I. Babuska,et al.  Special finite element methods for a class of second order elliptic problems with rough coefficients , 1994 .

[51]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[52]  T. Strouboulis,et al.  The generalized finite element method: an example of its implementation and illustration of its performance , 2000 .

[53]  O. C. Zienkiewicz,et al.  A new cloud-based hp finite element method , 1998 .

[54]  Carlos Armando Duarte,et al.  A high‐order generalized FEM for through‐the‐thickness branched cracks , 2007 .

[55]  I. Babuska,et al.  The design and analysis of the Generalized Finite Element Method , 2000 .

[56]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[57]  Ivo Babuška,et al.  Mesh‐independent p‐orthotropic enrichment using the generalized finite element method , 2002 .