Efficient Construction of Geometric Nerve Fiber Models for Simulation with 3D-PLI

Three-dimensional (3D) polarized light imaging (PLI) is an unique technique used to reconstruct nerve fiber orientations of postmortem brains at ultra-high resolution. To continuously improve the current physical model of 3D-PLI, simulations are powerful methods. Since the creation of simulated data can be time consuming, we developed a tool which enables fast and efficient creation of synthetic fiber data using parametric functions and interpolation methods. Performance tests showed that every component of the program scales linearly with the amount of fiber points while the reconstructed fiber cup phantom and optic chiasm-like crossing fiber models reproduce known effects known from 3D-PLI measurements.