Voronoi-Based Zoning Design by Multi-objective Genetic Optimization

This paper presents a new approach to optimal zoning design. The approach uses a multi-objective genetic algorithm to define, in a unique process, the optimal number of zones of the zoning method along with the optimal zones, defined through Voronoi diagrams. The experimental tests, carried out in the field of handwritten digit recognition, show the superiority of new approach with respect to traditional dynamic approaches for zoning design, based on single-objective optimization techniques.

[1]  Sebastiano Impedovo,et al.  Tuning between Exponential Functions and Zones for Membership Functions Selection in Voronoi-Based Zoning for Handwritten Character Recognition , 2011, 2011 International Conference on Document Analysis and Recognition.

[2]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[3]  Ching Y. Suen,et al.  Computer recognition of unconstrained handwritten numerals , 1992, Proc. IEEE.

[4]  Sebastiano Impedovo,et al.  Optimal zoning design by genetic algorithms , 2006, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[5]  Luiz Eduardo Soares de Oliveira,et al.  Handwritten Character Recognition Using Nonsymmetrical Perceptual Zoning , 2007, Int. J. Pattern Recognit. Artif. Intell..

[6]  H.M.R. Abou-zeid,et al.  Computer recognition of unconstrained handwritten numerals , 2003, 2003 46th Midwest Symposium on Circuits and Systems.

[7]  Sebastiano Impedovo,et al.  Feature Membership Functions in Voronoi-Based Zoning , 2009, AI*IA.

[8]  Marc Parizeau,et al.  Genetic engineering of hierarchical fuzzy regional representations for handwritten character recognition , 2006, International Journal of Document Analysis and Recognition (IJDAR).

[9]  Atul Negi,et al.  Localization, extraction and recognition of text in Telugu document images , 2003, Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings..

[10]  Anil K. Jain,et al.  Feature extraction methods for character recognition-A survey , 1996, Pattern Recognit..

[11]  K. M. Kulkarni,et al.  A high accuracy algorithm for recognition of handwritten numerals , 1988, Pattern Recognit..

[12]  Majid Ahmadi,et al.  Handwritten numeral recognition with multiple features and multistage classifiers , 1994, Proceedings of IEEE International Symposium on Circuits and Systems - ISCAS '94.

[13]  Sebastiano Impedovo,et al.  Membership Functions for Zoning-Based Recognition of Handwritten Digits , 2010, 2010 20th International Conference on Pattern Recognition.

[14]  Sebastiano Impedovo,et al.  Zoning Design for Handwritten Numeral Recognition , 1997, ICIAP.

[15]  Luiz Eduardo Soares de Oliveira,et al.  Automatic Recognition of Handwritten Numerical Strings: A Recognition and Verification Strategy , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Luiz Eduardo Soares de Oliveira,et al.  Intelligent zoning design using multi-objective evolutionary algorithms , 2003, Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings..

[17]  Sung-Hyuk Cha,et al.  Optimizing binary feature vector similarity measure using genetic algorithm and handwritten character recognition , 2003, Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings..

[18]  Sebastiano Impedovo,et al.  Class-oriented recognizer design by weighting local decisions , 2003, 12th International Conference on Image Analysis and Processing, 2003.Proceedings..

[19]  C.Y. Suen,et al.  Analysis and recognition of alphanumeric handprints by parts , 1994, IEEE Trans. Syst. Man Cybern..

[20]  Ernest Valveny,et al.  Numerical recognition for quality control of surgical sachets , 2003, Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings..

[21]  Sebastiano Impedovo,et al.  Zoning Methods for Hand-Written Character Recognition: An Overview , 2010, 2010 12th International Conference on Frontiers in Handwriting Recognition.

[22]  Mindy Bokser,et al.  Omnidocument technologies , 1992, Proc. IEEE.

[23]  Sebastiano Impedovo,et al.  Analysis of Membership Functions for Voronoi-Based Classification , 2010, 2010 12th International Conference on Frontiers in Handwriting Recognition.

[24]  Ching Y. Suen,et al.  Historical review of OCR research and development , 1992, Proc. IEEE.

[25]  Fumitaka Kimura,et al.  Handwritten numerical recognition based on multiple algorithms , 1991, Pattern Recognit..