Ladder Operators and Endomorphisms in Combinatorial Physics

Starting with the Heisenberg-Weyl algebra, fundamental to quantum physics, we first show how the ordering of the non-commuting operators intrinsic to that algebra gives rise to generalizations of the classical Stirling Numbers of Combinatorics. These may be expressed in terms of infinite, but {\em row-finite}, matrices, which may also be considered as endomorphisms of $\C[[x]]$. This leads us to consider endomorphisms in more general spaces, and these in turn may be expressed in terms of generalizations of the ladder-operators familiar in physics.

[1]  Tero Harju,et al.  Combinatorics on Words , 2004 .

[2]  Gérard Henry Edmond Duchamp,et al.  Ordering relations for q-boson operators, continued fraction techniques and the q-CBH enigma , 1995 .

[3]  Open University,et al.  COMBINATORIAL PHYSICS, NORMAL ORDER AND MODEL FEYNMAN GRAPHS , 2003 .

[4]  Craig Huneke,et al.  Commutative Algebra I , 2012 .

[5]  Berndt Farwer,et al.  ω-automata , 2002 .

[6]  Luigi Accardi,et al.  Interacting Fock Spaces and Gaussianization of Probability Measures , 1998 .

[7]  W. Heisenberg Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen , 1925 .

[8]  UK,et al.  ONE-PARAMETER GROUPS AND COMBINATORIAL PHYSICS , 2004 .

[9]  JOEL LEWIS,et al.  ON DIFFERENTIAL POSETS , 2007 .

[10]  N. J. A. Sloane,et al.  Some canonical sequences of integers , 1995, math/0205301.

[11]  Allan I. Solomon,et al.  Integrable representations of the ultra-commutation relations , 1997 .

[12]  Jean Berstel,et al.  Rational series and their languages , 1988, EATCS monographs on theoretical computer science.

[13]  H. H. Schaefer,et al.  Topological Vector Spaces , 1967 .

[14]  F. Trèves Topological vector spaces, distributions and kernels , 1967 .

[15]  Umberto Eco,et al.  Theory of Codes , 1976 .

[16]  S. Semmes Topological Vector Spaces , 2003 .

[17]  France,et al.  Heisenberg–Weyl algebra revisited: combinatorics of words and paths , 2008, 0904.1506.

[18]  France,et al.  Combinatorial approach to generalized Bell and Stirling numbers and boson normal ordering problem , 2005 .

[19]  Charalambos A. Charalambides,et al.  Enumerative combinatorics , 2018, SIGA.

[20]  Anna Varvak Rook numbers and the normal ordering problem , 2005, J. Comb. Theory, Ser. A.

[21]  Salvatore Pincherle Le operazioni distributive e le loro applicazioni all'analisi , 1901 .

[22]  Kuo-Tsai Chen,et al.  Formal differential equations , 1961 .

[23]  A. I. Solomon,et al.  The Boson Normal Ordering Problem and Generalized Bell Numbers , 2002 .

[24]  D. E. Loeb,et al.  Operator expansion in the derivative and multiplication by x , 1996 .

[25]  Allan I. Solomon,et al.  The Ultra-Commutation Relations , 1998 .

[26]  Kraków,et al.  Combinatorics and Boson normal ordering: A gentle introduction , 2007, 0704.3116.

[27]  I. Stewart,et al.  Infinite-dimensional Lie algebras , 1974 .

[28]  Sergey Fomin,et al.  Duality of Graded Graphs , 1994 .

[29]  W. Heisenberg,et al.  Zur Quantenmechanik. II. , 1926 .

[30]  UK,et al.  The general boson normal ordering problem , 2003 .

[31]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .