Non-linear optical properties of chalcogenide glasses in the system As–S–Se

Abstract We report results of a systematic study examining the relationship of bond type and concentration to the linear and non-linear optical properties of As–S–Se glasses. The effects of iso-structural substitution of Se for S and the resulting impact on structure and the non-linear refractive index, n 2 , are discussed. Non-linear optical properties of As–S–Se chalcogenide glasses were measured by the Z-scan technique at 1.6 μm, and measured n 2 up to 400 times the n 2 for silica were observed. Such large n 2 for glasses with small As/(S + Se) molar ratios is correlated with the presence of covalent, homopolar Se–Se bonds in the glass structure as identified by Raman spectroscopy, and can not be attributed to any red shift in the absorption edge or to a resonant effect. The suitability of these glasses for planar waveguides based on such nonlinear properties is thus confirmed, and recent fabrication results are described.

[1]  Hiroyuki Nasu,et al.  Third‐Harmonic Generation from Some Chalcogenide Glasses , 1990 .

[2]  J. Sanghera,et al.  Properties of As40S(60–x) Sex Glasses for IR Fiber Optics , 1996 .

[3]  A. Apling,et al.  Diffraction studies of glass structure: (V). The structure of some arsenic chalcogenide glasses , 1974 .

[4]  William H. Dumbaugh,et al.  Nonlinear optical susceptibilities of high‐index glasses , 1989 .

[5]  Z. Jakšić,et al.  Pressure-induced amorphization of germanium diselenide , 1998 .

[6]  Tigran Galstian,et al.  Fabrication and characterization of integrated optical waveguides in sulfide chalcogenide glasses , 1999 .

[7]  Masaki Asobe,et al.  Nonlinear refractive index measurement in chalcogenide‐glass fibers by self‐phase modulation , 1992 .

[8]  E. W. Stryland,et al.  Sensitive Measurement of Optical Nonlinearities Using a Single Beam Special 30th Anniversary Feature , 1990 .

[9]  Kathleen Richardson,et al.  Luminescence from neodymium-ion-implanted As 2 S 3 waveguides , 1998 .

[10]  Linear and nonlinear optical properties of chalcogenide glasses , 1993 .

[11]  S. Solin,et al.  Temperature Dependence of the Raman Spectrum and the Depolarization Spectrum of Amorphous As 2 S 3 , 1973 .

[12]  U. Strom,et al.  Raman scattering of the mixed chalcogenide glass system As2SxSe3-x , 1983 .

[13]  Sophie LaRochelle,et al.  First- and second-order Bragg gratings in single-mode planar waveguides of chalcogenide glasses , 1999 .

[14]  Itaru Yokohama,et al.  Low power all-optical switching in a nonlinear optical loop mirror using chalcogenide glass fibre , 1996 .

[15]  S. Greenbaum,et al.  Structure and bonding in the mixed chalcogenide system As2SxSe3−x , 1983 .

[16]  A. Kolobov,et al.  Role of lone-pair electrons in reversible photostructural changes in amorphous chalcogenides , 1998 .

[17]  A. Hilton Optical properties of chalcogenide glasses , 1970 .

[18]  G. Lucovsky Optic Modes in Amorphous As 2 S 3 and As 2 Se 3 , 1972 .

[19]  A. Schulte Near-Infrared Raman Spectroscopy Using CCD Detection and a Semiconductor Bandgap Filter for Rayleigh Line Rejection , 1992 .

[20]  J. C. Phillips,et al.  Molecular structure ofAs2Se3glassglass , 1980 .

[21]  Rudolf Frerichs,et al.  New Optical Glasses with Good Transparency in the Infrared , 1953 .

[22]  S. Itoh,et al.  Structural model of amorphous As2S3 , 1981 .

[23]  Katsuhiko Hattori,et al.  Raman study of liquid sulfur , 1983 .

[24]  N. Morimoto THE CRYSTAL STRUCTURE OF ORPIMENT (As2S3) REFINED , 1954 .

[25]  A. Villeneuve,et al.  Comparison of nonlinear optical properties of sulfide glasses in bulk and thin film form , 1998 .

[26]  Kathleen Richardson,et al.  Photoinduced self-developing relief gratings in thin film chalcogenide As/sub 2/S/sub 3/ glasses , 1997 .

[27]  George I. Stegeman,et al.  Nonlinear materials for information processing and communications , 1996, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.