Statman's 1-Section Theorem

Statman?s 1-Section Theorem (Statman, 1985a, in "Harvey Friedman?s Research on the Foundations of Mathematics" ( L. Harrington et al., Eds.), pp. 331-338, North-Holland, Amsterdam) is an important but little-known result in the model theory of the simply typed ?-calculus. The 1-Section Theorem states a necessary and sufficient condition on models of the simply-typed ?-calculus for determining whether s?-equational reasoning is complete for proving equations that hold in a model. We review the statement of the theorem, give a detailed proof, and discuss its significance.

[1]  John C. Mitchell,et al.  Type Systems for Programming Languages , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[2]  Jon G. Riecke Fully abstract translations between functional languages , 1991, POPL '91.

[3]  Jon G. Riecke,et al.  The logic and expressibility of simply-typed call-by-value and lazy languages , 1992 .

[4]  Richard Statman,et al.  Logical Relations and the Typed lambda-Calculus , 1985, Inf. Control..

[5]  Ulrich Berger,et al.  An inverse of the evaluation functional for typed lambda -calculus , 1991, [1991] Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science.

[6]  Jon G. Riecke,et al.  Algebraic reasoning and completeness in typed languages , 1993, POPL '93.

[7]  Jon G. Riecke,et al.  Fully abstract translations between functional languages , 1991, POPL '91.

[8]  Albert R. Meyer,et al.  What is a Model of the Lambda Calculus? , 1982, Inf. Control..

[9]  Richard Statman,et al.  Completeness, invariance and λ-definability , 1982, Journal of Symbolic Logic.

[10]  V. Yu. Sazonov Expressibility of functions in D. Scott's LCF language , 1976 .

[11]  R. Statman Equality between Functionals Revisited , 1985 .

[12]  G.D. Plotkin,et al.  LCF Considered as a Programming Language , 1977, Theor. Comput. Sci..

[13]  Jan van Leeuwen,et al.  Handbook of Theoretical Computer Science, Vol. B: Formal Models and Semantics , 1994 .

[14]  Henk Barendregt,et al.  The Lambda Calculus: Its Syntax and Semantics , 1985 .

[15]  H. Friedman Equality between functionals , 1975 .

[16]  Carl A. Gunter,et al.  Semantic Domains , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[17]  Herbert B. Enderton,et al.  A mathematical introduction to logic , 1972 .