A broadly tunable synthesis of linear α-olefins
暂无分享,去创建一个
T. Dietel | R. Kempe | A. Gollwitzer | W. Kretschmer | Andreas Gollwitzer | Thomas Dietel | Winfried P. Kretschmer | Rhett Kempe
[1] J. Shabaker,et al. Iron-Catalyzed Chain Growth of Ethylene: In Situ Regeneration of ZnEt2 by Tandem Catalysis , 2015 .
[2] G. P. Belov. Catalytic synthesis of higher olefins from ethylene , 2014, Catalysis in Industry.
[3] Pierre Braunstein,et al. Ethylene oligomerization using iron complexes: beyond the discovery of bis(imino)pyridine ligands. , 2014, Chemical communications.
[4] P. Zinck,et al. Coordinative chain transfer polymerization. , 2013, Chemical reviews.
[5] G. P. Belov. Tetramerization of ethylene to octene-1 (a review) , 2012, Petroleum Chemistry.
[6] Robby A. Petros,et al. Zirconium-catalyzed carboalumination of α-olefins and chain growth of aluminum alkyls: kinetics and mechanism. , 2011, Journal of the American Chemical Society.
[7] D. McGuinness. Olefin oligomerization via metallacycles: dimerization, trimerization, tetramerization, and beyond. , 2011, Chemical reviews.
[8] Tobias A Bauer,et al. An efficient yttrium catalysed version of the "Aufbaureaktion" for the synthesis of terminal functionalised polyethylene. , 2010, Dalton transactions.
[9] L. Sita. Ex Uno Plures (“Out of One, Many”): New Paradigms for Expanding the Range of Polyolefins Through Reversible Group Transfers. , 2009 .
[10] Z. Hou,et al. Cationic scandium allyl complexes bearing mono(cyclopentadienyl) ligands: synthesis, novel structural variety, and olefin-polymerization catalysis. , 2008, Chemistry, an Asian journal.
[11] R. Kempe. How to polymerize ethylene in a highly controlled fashion? , 2007, Chemistry.
[12] T. Schmalz,et al. Reversible chain transfer between organoyttrium cations and aluminum: synthesis of aluminum-terminated polyethylene with extremely narrow molecular-weight distribution. , 2006, Chemistry.
[13] G. Britovsek,et al. Iron catalyzed polyethylene chain growth on zinc: a study of the factors delineating chain transfer versus catalyzed chain growth in zinc and related metal alkyl systems. , 2004, Journal of the American Chemical Society.
[14] Xin Ma,et al. Aluminum-nickel bonded intermediates in the Ziegler Nickel Effect: mechanistic support from catalyzed hydroalumination and carbalumination reactions☆ , 1997 .
[15] D. W. Pollock,et al. Synthesis and Spectroscopic Characterization of the d0 Transition Metal-Alkyl-Alkene Complex Cp*2YCH2CH2C(CH3)2CH:CH2 , 1995 .
[16] M. Bochmann,et al. Cationic group IV metal alkyl complexes and their role as olefin polymerization catalysts: The formation of ethyl-bridged dinuclear and heterodinuclear zirconium and hafnium complexes , 1995 .
[17] M. Bochmann,et al. Monomer-dimer equilibria in homo- and heterodinuclear cationic alkylzirconium complexes and their role in polymerization catalysis , 1994 .
[18] M. Bochmann,et al. Monomer-Dimer-Gleichgewichte in homo- und heterodinuclearen kationischen Alkylzirconiumkomplexen: zur Rolle von Alkylaluminiumverbindungen bei der Stabilisierung katalytisch aktiver Zentren† , 1994 .
[19] H. Vogel,et al. K. Weissermel, H.‐J. Arpe: Industrielle Organische Chemie, Bedeutende Vor‐ und Zwischenprodukte, 3. überarb. und erweiterte Auflage, VCH Verlagsgesellschaft, Weinheim 1988. 455 Seiten, Preis: DM 118,–. , 1989 .
[20] P. A. Schulz,et al. Multiphoton Dissociation of Polyatomic Molecules , 1979 .
[21] G. Wilke,et al. The “Nickel Effect” , 1973 .
[22] Ralph G. Pearson,et al. Kinetics and mechanism , 1961 .
[23] Paul J. Flory,et al. Molecular Size Distribution in Linear Condensation Polymers1 , 1936 .
[24] G. Schulz. Über die Beziehung zwischen Reaktionsgeschwindigkeit und Zusammensetzung des Reaktionsproduktes bei Makropolymerisationsvorgängen , 1935 .