A broadly tunable synthesis of linear α-olefins

[1]  J. Shabaker,et al.  Iron-Catalyzed Chain Growth of Ethylene: In Situ Regeneration of ZnEt2 by Tandem Catalysis , 2015 .

[2]  G. P. Belov Catalytic synthesis of higher olefins from ethylene , 2014, Catalysis in Industry.

[3]  Pierre Braunstein,et al.  Ethylene oligomerization using iron complexes: beyond the discovery of bis(imino)pyridine ligands. , 2014, Chemical communications.

[4]  P. Zinck,et al.  Coordinative chain transfer polymerization. , 2013, Chemical reviews.

[5]  G. P. Belov Tetramerization of ethylene to octene-1 (a review) , 2012, Petroleum Chemistry.

[6]  Robby A. Petros,et al.  Zirconium-catalyzed carboalumination of α-olefins and chain growth of aluminum alkyls: kinetics and mechanism. , 2011, Journal of the American Chemical Society.

[7]  D. McGuinness Olefin oligomerization via metallacycles: dimerization, trimerization, tetramerization, and beyond. , 2011, Chemical reviews.

[8]  Tobias A Bauer,et al.  An efficient yttrium catalysed version of the "Aufbaureaktion" for the synthesis of terminal functionalised polyethylene. , 2010, Dalton transactions.

[9]  L. Sita Ex Uno Plures (“Out of One, Many”): New Paradigms for Expanding the Range of Polyolefins Through Reversible Group Transfers. , 2009 .

[10]  Z. Hou,et al.  Cationic scandium allyl complexes bearing mono(cyclopentadienyl) ligands: synthesis, novel structural variety, and olefin-polymerization catalysis. , 2008, Chemistry, an Asian journal.

[11]  R. Kempe How to polymerize ethylene in a highly controlled fashion? , 2007, Chemistry.

[12]  T. Schmalz,et al.  Reversible chain transfer between organoyttrium cations and aluminum: synthesis of aluminum-terminated polyethylene with extremely narrow molecular-weight distribution. , 2006, Chemistry.

[13]  G. Britovsek,et al.  Iron catalyzed polyethylene chain growth on zinc: a study of the factors delineating chain transfer versus catalyzed chain growth in zinc and related metal alkyl systems. , 2004, Journal of the American Chemical Society.

[14]  Xin Ma,et al.  Aluminum-nickel bonded intermediates in the Ziegler Nickel Effect: mechanistic support from catalyzed hydroalumination and carbalumination reactions☆ , 1997 .

[15]  D. W. Pollock,et al.  Synthesis and Spectroscopic Characterization of the d0 Transition Metal-Alkyl-Alkene Complex Cp*2YCH2CH2C(CH3)2CH:CH2 , 1995 .

[16]  M. Bochmann,et al.  Cationic group IV metal alkyl complexes and their role as olefin polymerization catalysts: The formation of ethyl-bridged dinuclear and heterodinuclear zirconium and hafnium complexes , 1995 .

[17]  M. Bochmann,et al.  Monomer-dimer equilibria in homo- and heterodinuclear cationic alkylzirconium complexes and their role in polymerization catalysis , 1994 .

[18]  M. Bochmann,et al.  Monomer-Dimer-Gleichgewichte in homo- und heterodinuclearen kationischen Alkylzirconiumkomplexen: zur Rolle von Alkylaluminiumverbindungen bei der Stabilisierung katalytisch aktiver Zentren† , 1994 .

[19]  H. Vogel,et al.  K. Weissermel, H.‐J. Arpe: Industrielle Organische Chemie, Bedeutende Vor‐ und Zwischenprodukte, 3. überarb. und erweiterte Auflage, VCH Verlagsgesellschaft, Weinheim 1988. 455 Seiten, Preis: DM 118,–. , 1989 .

[20]  P. A. Schulz,et al.  Multiphoton Dissociation of Polyatomic Molecules , 1979 .

[21]  G. Wilke,et al.  The “Nickel Effect” , 1973 .

[22]  Ralph G. Pearson,et al.  Kinetics and mechanism , 1961 .

[23]  Paul J. Flory,et al.  Molecular Size Distribution in Linear Condensation Polymers1 , 1936 .

[24]  G. Schulz Über die Beziehung zwischen Reaktionsgeschwindigkeit und Zusammensetzung des Reaktionsproduktes bei Makropolymerisationsvorgängen , 1935 .