Microstructural enrichment functions based on stochastic Wang tilings
暂无分享,去创建一个
J. Zeman | J. Zeman | A. Kucerová | J. Nov'ak | A. Kuvcerov'a | J. Novák
[1] A. Simone,et al. A partition of unity finite element method for obtaining elastic properties of continua with embedded thin fibres , 2010 .
[2] P. P. Castañeda,et al. Effective-medium theory for infinite-contrast two-dimensionally periodic linear composites with strongly anisotropic matrix behavior : Dilute limit and crossover behavior , 2008, 0804.2817.
[3] Erik D. Demaine,et al. Jigsaw Puzzles, Edge Matching, and Polyomino Packing: Connections and Complexity , 2007, Graphs Comb..
[4] Jarkko Kari,et al. An Aperiodic Set of Wang Cubes , 1996, J. Univers. Comput. Sci..
[5] Michal Šejnoha,et al. Qualitative analysis of fiber composite microstructure: Influence of boundary conditions , 2006 .
[6] L. J. Sluys,et al. A partition of unity finite element method for simulating non‐linear debonding and matrix failure in thin fibre composites , 2011 .
[7] S. Torquato. Random Heterogeneous Materials , 2002 .
[8] Ivo Babuška,et al. An approach for constructing families of homogenized equations for periodic media. I: an integral representation and its consequences , 1991 .
[9] Stefan Scheiner,et al. From micron-sized needle-shaped hydrates to meter-sized shotcrete tunnel shells: micromechanical upscaling of stiffness and strength of hydrating shotcrete , 2008 .
[10] Daniel Balzani,et al. Approximation of random microstructures by periodic statistically similar representative volume elements based on lineal-path functions , 2011 .
[11] J. D. Eshelby,et al. The elastic field outside an ellipsoidal inclusion , 1959, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[12] G. Povirk,et al. Incorporation of microstructural information into models of two-phase materials , 1995 .
[13] 小山 毅,et al. 拡張有限要素法(XFEM)・一般化有限要素法(GFEM)を用いた材料モデリングのレビュー Ted Belytschko,Robert Gracie and Giulio Ventura:A Review of Extended/Generalized Finite Element Methods for Material Modeling [Modeling and Simulations in Materials Science and Engineering, Vol.17, 043001, June 2009](構造,文献抄録) , 2010 .
[14] J. Michel,et al. Effective properties of composite materials with periodic microstructure : a computational approach , 1999 .
[15] Anton Alstes. Wang Tiles for Image and Texture Generation , 2004 .
[16] H. Moulinec,et al. A fast numerical method for computing the linear and nonlinear mechanical properties of composites , 1994 .
[17] C. D. Gelatt,et al. Optimization by Simulated Annealing , 1983, Science.
[18] S. Torquato,et al. Reconstructing random media , 1998 .
[19] D. Fullwood,et al. Optimized structure based representative volume element sets reflecting the ensemble-averaged 2-point statistics , 2010 .
[20] T. Belytschko,et al. A review of extended/generalized finite element methods for material modeling , 2009 .
[21] Jacob Fish,et al. Multiscale enrichment based on partition of unity for nonperiodic fields and nonlinear problems , 2007 .
[22] Ismael Herrera,et al. Trefftz Method: A General Theory , 2000 .
[23] Gennadi Vainikko,et al. Periodic Integral and Pseudodifferential Equations with Numerical Approximation , 2001 .
[24] Ares Lagae,et al. A Comparison of Methods for Generating Poisson Disk Distributions , 2008, Comput. Graph. Forum.
[25] David S. Ebert,et al. Volume illustration using wang cubes , 2007, TOGS.
[26] T. Belytschko,et al. The extended/generalized finite element method: An overview of the method and its applications , 2010 .
[27] A Tudor,et al. Three-dimensional reconstruction of statistically optimal unit cells of polydisperse particulate composites from microtomography. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.
[28] Kenji Yamamoto,et al. Hierarchical adaptive nanostructured PVD coatings for extreme tribological applications: the quest for nonequilibrium states and emergent behavior , 2012, Science and technology of advanced materials.
[29] Andrew S. Glassner. Andrew Glassner's notebook , 2004, IEEE Computer Graphics and Applications.
[30] Anna Kučerová,et al. Compressing random microstructures via stochastic Wang tilings. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.
[31] I. Babuska,et al. The partition of unity finite element method: Basic theory and applications , 1996 .
[32] Ivo Babuska,et al. Generalized p-FEM in homogenization , 2000, Numerische Mathematik.
[33] J. D. Eshelby. The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[34] Jan Novák,et al. Accelerating a FFT-based solver for numerical homogenization of periodic media by conjugate gradients , 2010, J. Comput. Phys..
[35] S. Dreyfus,et al. Thermodynamical Approach to the Traveling Salesman Problem : An Efficient Simulation Algorithm , 2004 .
[36] Robert Lipton,et al. Optimal Local Approximation Spaces for Generalized Finite Element Methods with Application to Multiscale Problems , 2010, Multiscale Model. Simul..
[37] Karel Culík,et al. An aperiodic set of 13 Wang tiles , 1996, Discret. Math..
[38] J. Chaboche,et al. FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials , 2000 .
[39] G. Milton. The Theory of Composites , 2002 .
[40] Chris J. Pearce,et al. A micromechanics-enhanced finite element formulation for modelling heterogeneous materials , 2011, ArXiv.
[41] V. G. Kouznetsova,et al. Multi-scale computational homogenization: Trends and challenges , 2010, J. Comput. Appl. Math..
[42] Hao Wang. Proving theorems by pattern recognition — II , 1961 .
[43] Jacob Fish,et al. Multiscale enrichment based on partition of unity , 2005 .
[44] W. Curtin,et al. Using microstructure reconstruction to model mechanical behavior in complex microstructures , 2006 .
[45] The jigsaw puzzles. , 2015, Work.
[46] Michal Šejnoha,et al. From random microstructures to representative volume elements , 2007 .
[47] J. A. Freitas,et al. Formulation of elastostatic hybrid-Trefftz stress elements , 1998 .
[48] Chris J. Pearce,et al. A corotational hybrid-Trefftz stress formulation for modelling cohesive cracks , 2009 .