A virtual server queueing network method for component based performance modelling of metacomputing

In this paper, we introduce a virtual server queueing network concept to evaluate the performance of metacomputing systems. It adds a virtual server concept to the existing queueing network theory. It enables us to effectively and accurately evaluate the performance of metacomputing systems. Component based software development now gains much interest and is especially regarded as very useful and necessary in the area of metacomputing. We find that the virtual server queueing network concept is well suited for a component based performance modelling and evaluation approach. In this paper, we have derived component based performance models of a metacomputing environment using the virtual server queueing network concept and validated them through measurement. With it, we quantitatively characterize the file access performance of caching in the metacomputing environment. We used a stochastic discrete event simulation as the main methodology to solve the models.

[1]  Laxmi N. Bhuyan,et al.  Approximate Analysis of Single and Multiple Ring Networks , 1989, IEEE Trans. Computers.

[2]  John F. Shoch,et al.  Measured performance of an Ethernet local network , 1980, CACM.

[3]  David J. Lilja,et al.  Cache coherence in large-scale shared-memory multiprocessors: issues and comparisons , 1993, CSUR.

[4]  Alexandre Brandwajn Models of DASD Subsystems with Multiple Access Paths: A Throughput-Driven Approach , 1983, IEEE Transactions on Computers.

[5]  Toby J. Teorey,et al.  A comparative analysis of disk scheduling policies , 1972, CACM.

[6]  David D. Clark,et al.  An analysis of TCP processing overhead , 1988, IEEE Communications Magazine.

[7]  Kishor S. Trivedi,et al.  Optimal Design of Multilevel Storage Hierarchies , 1982, IEEE Transactions on Computers.

[8]  Mary Baker,et al.  Measurements of a distributed file system , 1991, SOSP '91.

[9]  Mario Gerla,et al.  A Dual Priority MVA Model for a Large Distributed System: LOCUS , 1984, Performance.

[10]  Michael Burrows,et al.  Performance of Firefly RPC , 1990, ACM Trans. Comput. Syst..

[11]  John Wilkes,et al.  UNIX Disk Access Patterns , 1993, USENIX Winter.

[12]  Michelle Y. Kim,et al.  Synchronized Disk Interleaving , 1986, IEEE Transactions on Computers.

[13]  D. Artis DASD Subsystems : Evaluating the Performance Envelope 1 , 2022 .

[14]  C. Wood,et al.  DASD trends: cost, performance, and form factor , 1993, Proc. IEEE.

[15]  Harvey Dubner,et al.  Queueing Analysis of the IBM 2314 Disk Storage Facility , 1968, JACM.

[16]  W. Bux Token-ring local-area networks and their performance , 1989 .

[17]  K. Kavi Cache Memories Cache Memories in Uniprocessors. Reading versus Writing. Improving Performance , 2022 .

[18]  Brian Zill,et al.  Protocol implementation on the Nectar Communication Processor , 1990, SIGCOMM '90.

[19]  Peter Steenkiste A systematic approach to host interface design for high-speed networks , 1994, Computer.

[20]  Mark S. Squillante,et al.  Performance Evaluation in Industry: A Personal Perspective , 2000, Performance Evaluation.

[21]  Alan Jay Smith,et al.  Long term file migration: development and evaluation of algorithms , 1981, CACM.

[22]  Stephen S. Lavenberg,et al.  A Perspective on Queueing Models of Computer Performance , 1989, Perform. Evaluation.

[23]  Yonathan Bard,et al.  A model of shared dasd and multipathing , 1980 .

[24]  J. Spencer Love,et al.  Caching strategies to improve disk system performance , 1994, Computer.

[25]  Madhav V. Marathe,et al.  Analytical models for an Ethernet-like local area network link , 1981, SIGMETRICS '81.

[26]  John Kunze,et al.  A trace-driven analysis of the unix 4 , 1985, SOSP 1985.

[27]  John Wilkes,et al.  An introduction to disk drive modeling , 1994, Computer.

[28]  Domenico Ferrari,et al.  Modeling file system organizations in a local area network environment , 1984, 1984 IEEE First International Conference on Data Engineering.

[29]  Michael Burrows,et al.  Performance of Firefly RPC , 1989, SOSP '89.

[30]  Raj Jain Performance analysis of FDDI token ring networks: effect of parameters and guidelines for setting TTRT , 1990, SIGCOMM '90.

[31]  Joseph D. Langford,et al.  Queuing Analysis of an Optical Disk Jukebox Based Office System , 1990, IEEE Trans. Computers.

[32]  Alan Jay Smith,et al.  Disk cache—miss ratio analysis and design considerations , 1983, TOCS.

[33]  Joseph B. Major Processor, I/O Path, and DASD Configuration Capacity , 1981, IBM Syst. J..

[34]  Alexandre Brandwajn Models of DASD subsystems: Basic model of reconnection , 1981, Perform. Evaluation.

[35]  K. K. Ramakrishnan,et al.  A model of file server performance for a heterogeneous distributed system , 1986, SIGCOMM '86.

[36]  Stephen S. Lavenberg,et al.  A Validated Distributed System Performance Model , 1983, Performance.

[37]  Charles E. Skinner,et al.  Effects of Storage Contention on System Performance , 1969, IBM Syst. J..

[38]  Gilbert E. Houtekamer The Local Disk Controller , 1985, SIGMETRICS.

[39]  Harry G. Perros,et al.  An analytic model of a file server for bulk file transfers , 1985, PERV.

[40]  Yarsun Hsu,et al.  Performance evaluation of a massively parallel I/O subsystem , 1994, CARN.

[41]  Calvin C. Gotlieb,et al.  Performance of Movable-Head Disk Storage Devices , 1973, JACM.

[42]  Tilak Agerwala,et al.  Performance Analysis of Future Shared Storage Systems , 1984, IBM J. Res. Dev..

[43]  Domenico Ferrari,et al.  A Sensitivity Study of the Clustering Approach to Workload Modeling , 1986, Perform. Evaluation.

[44]  Willy Zwaenepoel,et al.  File access performance of diskless workstations , 1986, TOCS.

[45]  Neil C. Wilhelm A General Model for the Performance of Disk Systems , 1977, J. ACM.

[46]  S. J. Waters Estimating Magnetic Disc Seeks , 1975, Comput. J..

[47]  K. K. Ramakrishnan,et al.  Performance Analysis of Mass Storage Service Alternatives for Distributed Systems , 1989, IEEE Trans. Software Eng..