Error analysis and estimation for the finite volume method with applications to fluid flows

The accuracy of numerical simulation algorithms is one of main concerns in modern Computational Fluid Dynamics. Development of new and more accurate mathematical models requires an insight into the problem of numerical errors. In order to construct an estimate of the solution error in Finite Volume calculations, it is first necessary to examine its sources. Discretisation errors can be divided into two groups: errors caused by the discretisation of the solution domain and equation discretisation errors. The first group includes insufficient mesh resolution, mesh skewness and non-orthogonality. In the case of the second order Finite Volume method, equation discretisation errors are represented through numerical diffusion. Numerical diffusion coefficients from the discretisation of the convection term and the temporal derivative are derived. In an attempt to reduce numerical diffusion from the convection term, a new stabilised and bounded second-order differencing scheme is proposed. Three new methods of error estimation are presented. The Direct Taylor Series Error estimate is based on the Taylor series truncation error analysis. It is set up to enable single-mesh single-run error estimation. The Moment Error estimate derives the solution error from the cell imbalance in higher moments of the solution. A suitable normalisation is used to estimate the error magnitude. The Residual Error estimate is based on the local inconsistency between face interpolation and volume integration. Extensions of the method to transient flows and the Local Residual Problem error estimate are also given. Finally, an automatic error-controlled adaptive mesh refinement algorithm is set up in order to automatically produce a solution of pre-determined accuracy. It uses mesh refinement and unrefinement to control the local error magnitude. The method is tested on several characteristic flow situations, ranging from incompressible to supersonic flows, for both steady-state and transient problems.

[1]  B. P. Leonard,et al.  Simple high-accuracy resolution program for convective modelling of discontinuities , 1988 .

[2]  R. Maccormack The Effect of Viscosity in Hypervelocity Impact Cratering , 1969 .

[3]  Joe F. Thompson A survey of dynamically-adaptive grids in the numerical solution of partial differential equations , 1984 .

[4]  E. Bender Numerical heat transfer and fluid flow. Von S. V. Patankar. Hemisphere Publishing Corporation, Washington – New York – London. McGraw Hill Book Company, New York 1980. 1. Aufl., 197 S., 76 Abb., geb., DM 71,90 , 1981 .

[5]  J. Rotta,et al.  Statistische Theorie nichthomogener Turbulenz , 1951 .

[6]  S. Zalesak Fully multidimensional flux-corrected transport algorithms for fluids , 1979 .

[7]  Z. Lilek,et al.  A fourth-order finite volume method with colocated variable arrangement , 1995 .

[8]  Kim S. Bey,et al.  Adaptive Quadrilateral and Triangular Finite-Element Scheme for Compressible Flows , 1988 .

[9]  R. Bruce Simpson,et al.  Automatic local refinement for irregular rectangular meshes , 1979 .

[10]  R. Löhner An adaptive finite element scheme for transient problems in CFD , 1987 .

[11]  P. Sweby High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws , 1984 .

[12]  G. D. Raithby,et al.  A critical evaluation of upstream differencing applied to problems involving fluid flow , 1976 .

[13]  Alain Lerat,et al.  Noncentered schemes and schock propagation problems , 1974 .

[14]  James J. McGuirk,et al.  A depth-averaged mathematical model for the near field of side discharges into open-channel flow , 1978, Journal of Fluid Mechanics.

[15]  S. Orszag,et al.  Renormalization group analysis of turbulence. I. Basic theory , 1986 .

[16]  Thomas Sonar,et al.  Dynamic adaptivity and residual control in unsteady compressible flow computation , 1994 .

[17]  C. Hirsch,et al.  Numerical Computation of Internal and External Flows. By C. HIRSCH. Wiley. Vol. 1, Fundamentals of Numerical Discretization. 1988. 515 pp. £60. Vol. 2, Computational Methods for Inviscid and Viscous Flows. 1990, 691 pp. £65. , 1991, Journal of Fluid Mechanics.

[18]  B. Launder,et al.  Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc , 1974 .

[19]  P. Lax,et al.  Systems of conservation laws , 1960 .

[20]  Suhas V. Patankar,et al.  A NEW FINITE-DIFFERENCE SCHEME FOR PARABOLIC DIFFERENTIAL EQUATIONS , 1978 .

[21]  W. Rodi,et al.  A low dispersion and bounded convection scheme , 1991 .

[22]  B. P. Leonard,et al.  The ULTIMATE conservative difference scheme applied to unsteady one-dimensional advection , 1991 .

[23]  B. Vanleer,et al.  Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection , 1977 .

[24]  T. Shih,et al.  A new k-ϵ eddy viscosity model for high reynolds number turbulent flows , 1995 .

[25]  Sukumar Chakravarthy,et al.  High Resolution Schemes and the Entropy Condition , 1984 .

[26]  J. Zhu A low-diffusive and oscillation-free convection scheme , 1991 .

[27]  R. Ramakrishnan Structured and unstructured grid adaptation schemes for numerical modeling of field problems , 1994 .

[28]  George D. Raithby,et al.  IMPROVED FINITE-DIFFERENCE METHODS BASED ON A CRITICAL EVALUATION OF THE APPROXIMATION ERRORS , 1979 .

[29]  Klaus Bremhorst,et al.  A Modified Form of the k-ε Model for Predicting Wall Turbulence , 1981 .

[30]  P. Woodward,et al.  The numerical simulation of two-dimensional fluid flow with strong shocks , 1984 .

[31]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[32]  Leszek Demkowicz,et al.  Toward a universal adaptive finite element strategy part 3. design of meshes , 1989 .

[33]  Philippe R.B. Devloo,et al.  Adaptive finite element methods for the analysis of inviscid compressible flow: Part I. Fast refinement/unrefinement and moving mesh methods for unstructured meshes , 1986 .

[34]  O. C. Zienkiewicz,et al.  Basic formulation and linear problems , 1989 .

[35]  Yannis Kallinderis,et al.  Generic parallel adaptive-grid Navier-Stokes algorithm , 1994 .

[36]  Leszek Demkowicz,et al.  Adaptive methods for problems in solid and fluid mechanics , 1986 .

[37]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[38]  P. Moin,et al.  Numerical investigation of turbulent channel flow , 1981, Journal of Fluid Mechanics.

[39]  C. Rhie,et al.  A numerical study of the turbulent flow past an isolated airfoil with trailing edge separation , 1982 .

[40]  D. Spalding,et al.  A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows , 1972 .

[41]  J. Oden,et al.  Toward a universal h - p adaptive finite element strategy: Part 2 , 1989 .

[42]  B. Launder,et al.  Progress in the development of a Reynolds-stress turbulence closure , 1975, Journal of Fluid Mechanics.

[43]  P. Lax Weak solutions of nonlinear hyperbolic equations and their numerical computation , 1954 .

[44]  S. Muzaferija,et al.  Adaptive finite volume method for flow prediction using unstructured meshes and multigrid approach , 1994 .

[45]  R. W. MacCormack,et al.  A Numerical Method for Solving the Equations of Compressible Viscous Flow , 1981 .

[46]  James J. McGuirk,et al.  Evaluation of numerical diffusion effects in viscous flow calculations , 1994 .

[47]  J. Hansen,et al.  Review of some adaptive node-movement techniques in finite-element and finite-difference solutions of partial differential equations , 1991 .

[48]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[49]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme III. Upstream-centered finite-difference schemes for ideal compressible flow , 1977 .

[50]  Fue-Sang Lien,et al.  Upstream monotonic interpolation for scalar transport with application to complex turbulent flows , 1994 .

[51]  S. Orszag,et al.  Development of turbulence models for shear flows by a double expansion technique , 1992 .

[52]  G. D. Raithby,et al.  Skew upstream differencing schemes for problems involving fluid flow , 1976 .

[53]  P. Moin,et al.  Numerical Simulation of Turbulent Flows , 1984 .

[54]  M. Peric A finite volume method for the prediction of three-dimensional fluid flow in complex ducts , 1985 .

[55]  Ahmed Busnaina,et al.  Evaluation and Comparison of Bounding Techniques for Convection-Diffusion Problems , 1993 .

[56]  A. Lerat Implicit methods of second-order accuracy for the Euler equations , 1983 .

[57]  J. Oden,et al.  An a posteriori error estimate for finite element approximations of the Navier-Stokes equations , 1994 .

[58]  B. P. Leonard,et al.  A stable and accurate convective modelling procedure based on quadratic upstream interpolation , 1990 .

[59]  S. G. Rubin,et al.  A diagonally dominant second-order accurate implicit scheme , 1974 .

[60]  S. Vanka Block-implicit multigrid solution of Navier-Stokes equations in primitive variables , 1986 .

[61]  J. Lumley,et al.  A First Course in Turbulence , 1972 .

[62]  D. Spalding A novel finite difference formulation for differential expressions involving both first and second derivatives , 1972 .

[63]  D. Kelly,et al.  The self‐equilibration of residuals and complementary a posteriori error estimates in the finite element method , 1984 .

[64]  K. E. Torrance,et al.  Upstream-weighted differencing schemes and their application to elliptic problems involving fluid flow , 1974 .

[65]  Yannis Kallinderis,et al.  A 3D Finite-Volume Scheme for the Euler Equations on Adaptive Tetrahedral Grids , 1994 .

[66]  R. F. Warming,et al.  Upwind Second-Order Difference Schemes and Applications in Aerodynamic Flows , 1976 .

[67]  Daniel C. Haworth,et al.  A global approach to error estimation and physical diagnostics in multidimensional computational fluid dynamics , 1993 .

[68]  V. C. Patel,et al.  Turbulence models for near-wall and low Reynolds number flows - A review , 1985 .

[69]  M. Lesieur,et al.  Large-Eddy Simulations of Turbulent Flows over a Swept Backward-Facing Step , 1995 .

[70]  D. Hänel,et al.  Adaptive methods on unstructured grids for Euler and Navier-Stokes equations , 1993 .

[71]  J. Ferziger,et al.  An adaptive multigrid technique for the incompressible Navier-Stokes equations , 1989 .

[72]  B. V. Leer,et al.  Towards the Ultimate Conservative Difference Scheme , 1997 .

[73]  Stanley Osher,et al.  Large-scale computations in fluid mechanics , 1985 .

[74]  A. Jameson,et al.  Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes , 1981 .

[75]  B. Launder,et al.  The numerical computation of turbulent flows , 1990 .

[76]  J. T. Oden,et al.  An hp adaptive strategy for finite element approximations of the Navier‐Stokes equations , 1995 .

[77]  M. Lesieur,et al.  Spectral large-eddy simulation of isotropic and stably stratified turbulence , 1992, Journal of Fluid Mechanics.

[78]  J. Zhu,et al.  On the higher-order bounded discretization schemes for finite volume computations of incompressible flows , 1992 .

[79]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme , 1974 .

[80]  P. Moin,et al.  The structure of the vorticity field in homogeneous turbulent flows , 1987, Journal of Fluid Mechanics.