Pseudoalteromonas haloplanktis TAC125 produces 4-hydroxybenzoic acid that induces pyroptosis in human A459 lung adenocarcinoma cells

[1]  R. Fani,et al.  Pseudoalteromonas haloplanktis produces methylamine, a volatile compound active against Burkholderia cepacia complex strains. , 2017, New biotechnology.

[2]  M. Tutino,et al.  Anti-Biofilm Activity of a Long-Chain Fatty Aldehyde from Antarctic Pseudoalteromonas haloplanktis TAC125 against Staphylococcus epidermidis Biofilm , 2017, Front. Cell. Infect. Microbiol..

[3]  R. Fani,et al.  The pangenome of (Antarctic) Pseudoalteromonas bacteria: evolutionary and functional insights , 2017, BMC Genomics.

[4]  J. Mounier,et al.  Spotlight on Antimicrobial Metabolites from the Marine Bacteria Pseudoalteromonas: Chemodiversity and Ecological Significance , 2016, Marine drugs.

[5]  R. Fani,et al.  A novel synthetic medium and expression system for subzero growth and recombinant protein production in Pseudoalteromonas haloplanktis TAC125 , 2016, Applied Microbiology and Biotechnology.

[6]  Sharad Kumar,et al.  A single cut to pyroptosis , 2015, Oncotarget.

[7]  H. Steller,et al.  Live to die another way: modes of programmed cell death and the signals emanating from dying cells , 2015, Nature Reviews Molecular Cell Biology.

[8]  M. Diederich,et al.  A Survey of Marine Natural Compounds and Their Derivatives with Anti-Cancer Activity Reported in 2012 , 2015, Molecules.

[9]  M. Tutino,et al.  Anti-biofilm activity of pseudoalteromonas haloplanktis tac125 against staphylococcus epidermidis biofilm: Evidence of a signal molecule involvement? , 2015, International journal of immunopathology and pharmacology.

[10]  G. Kaur,et al.  Nature curing cancer – review on structural modification studies with natural active compounds having anti-tumor efficiency , 2015, Biotechnology reports.

[11]  A. Jemal,et al.  Cancer statistics, 2015 , 2015, CA: a cancer journal for clinicians.

[12]  Andreas Klitgaard,et al.  Accurate Dereplication of Bioactive Secondary Metabolites from Marine-Derived Fungi by UHPLC-DAD-QTOFMS and a MS/HRMS Library , 2014, Marine drugs.

[13]  H. Inoue,et al.  Multimodal immunogenic cancer cell death as a consequence of anticancer cytotoxic treatments , 2013, Cell Death and Differentiation.

[14]  R. Fani,et al.  Bioactive volatile organic compounds from Antarctic (sponges) bacteria. , 2013, New biotechnology.

[15]  M. Tutino,et al.  Anti-biofilm activity of the Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125. , 2013, Research in microbiology.

[16]  M. Diederich,et al.  A Survey of Marine Natural Compounds and Their Derivatives with Anti-Cancer Activity Reported in 2011 , 2013, Molecules.

[17]  J. Imhoff,et al.  Bio-mining the microbial treasures of the ocean: new natural products. , 2011, Biotechnology advances.

[18]  Luc Girard,et al.  Lung cancer cell lines as tools for biomedical discovery and research. , 2010, Journal of the National Cancer Institute.

[19]  A. Jemal,et al.  Cancer Statistics, 2010 , 2010, CA: a cancer journal for clinicians.

[20]  Eung-Soo Kim,et al.  Biotechnological doxorubicin production: pathway and regulation engineering of strains for enhanced production , 2010, Applied Microbiology and Biotechnology.

[21]  L. Zitvogel,et al.  Pyroptosis – a cell death modality of its kind? , 2010, European journal of immunology.

[22]  J. Bowman Bioactive Compound Synthetic Capacity and Ecological Significance of Marine Bacterial Genus Pseudoalteromonas , 2007, Marine drugs.

[23]  A. Danchin,et al.  Coping with cold: the genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125. , 2005, Genome research.

[24]  M. Tutino,et al.  Secretion of α-Amylase from Pseudoalteromonas haloplanktis TAB23: Two Different Pathways in Different Hosts , 2002, Journal of bacteriology.

[25]  S. Falkow,et al.  Salmonella Exploits Caspase-1 to Colonize Peyer's Patches in a Murine Typhoid Model , 2000, The Journal of experimental medicine.

[26]  S Falkow,et al.  The Salmonella invasin SipB induces macrophage apoptosis by binding to caspase-1. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[27]  N. Dubrawsky Cancer statistics , 1989, CA: a cancer journal for clinicians.