暂无分享,去创建一个
[1] Bernard Mourrain,et al. Geometrically smooth spline bases for data fitting and simulation , 2020, Comput. Aided Geom. Des..
[2] Larry L. Schumaker,et al. Macro-elements and stable local bases for splines on Powell-Sabin triangulations , 2003, Math. Comput..
[3] Tom Lyche,et al. Simplex-splines on the Clough-Tocher element , 2018, Comput. Aided Geom. Des..
[4] Mario Kapl,et al. An isogeometric C1 subspace on unstructured multi-patch planar domains , 2019, Comput. Aided Geom. Des..
[5] Zhonggui Chen,et al. Surface reconstruction using simplex splines on feature-sensitive configurations , 2017, Comput. Aided Geom. Des..
[6] Hendrik Speleers,et al. THB-splines: The truncated basis for hierarchical splines , 2012, Comput. Aided Geom. Des..
[7] Andrea Bressan,et al. Approximation in FEM, DG and IGA: a theoretical comparison , 2018, Numerische Mathematik.
[8] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[9] Hendrik Speleers,et al. Isogeometric analysis with Powell–Sabin splines for advection–diffusion–reaction problems , 2012 .
[10] Hendrik Speleers,et al. Construction of Normalized B-Splines for a Family of Smooth Spline Spaces Over Powell–Sabin Triangulations , 2013 .
[11] Larry L. Schumaker,et al. Macro-elements and stable local bases for splines on Clough-Tocher triangulations , 2001, Numerische Mathematik.
[12] Timon Rabczuk,et al. Isogeometric analysis with strong multipatch C1-coupling , 2018, Comput. Aided Geom. Des..
[13] Juan Cao,et al. A finite element framework based on bivariate simplex splines on triangle configurations , 2019 .
[14] Hendrik Speleers. A new B-spline representation for cubic splines over Powell-Sabin triangulations , 2015, Comput. Aided Geom. Des..
[15] W. Boehm,et al. Bezier and B-Spline Techniques , 2002 .
[16] Marian Neamtu,et al. Delaunay configurations and multivariate splines: A generalization of a result of B. N. Delaunay , 2007 .
[17] Hendrik Speleers,et al. Construction and analysis of cubic Powell-Sabin B-splines , 2017, Comput. Aided Geom. Des..
[18] Michel Bercovier,et al. Smooth Bézier Surfaces over Unstructured Quadrilateral Meshes , 2014, 1412.1125.
[19] Hendrik Speleers,et al. Explicit error estimates for spline approximation of arbitrary smoothness in isogeometric analysis , 2020, Numerische Mathematik.
[20] Larry L. Schumaker,et al. Smooth Macro-Elements Based on Powell–Sabin Triangle Splits , 2002, Adv. Comput. Math..
[21] Ahmad H. Nasri,et al. T-splines and T-NURCCs , 2003, ACM Trans. Graph..
[22] Thomas J. R. Hughes,et al. Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .
[23] Dwight Diener,et al. Instability in the dimension of spaces of bivariate piecewise polynomials of degree 2 r and smoothness order r , 1990 .
[24] Jan Grošelj. A normalized representation of super splines of arbitrary degree on Powell–Sabin triangulations , 2016 .
[25] Hendrik Speleers,et al. A Family of Smooth Quasi-interpolants Defined Over Powell–Sabin Triangulations , 2015 .
[26] C. Micchelli. On a numerically efficient method for computing multivariate B-splines , 1979 .
[27] T. Lyche,et al. Stable Simplex Spline Bases for $$C^3$$C3 Quintics on the Powell–Sabin 12-Split , 2015, 1504.02628.
[28] Paul Dierckx,et al. On calculating normalized Powell-Sabin B-splines , 1997, Comput. Aided Geom. Des..
[29] Xiaoping Qian,et al. Isogeometric Shape Optimization on Triangulations , 2016, DAC 2016.
[30] Ren-Hong Wang,et al. Multivariate spline spaces , 1983 .
[31] Tom Lyche,et al. A B-spline-like basis for the Powell-Sabin 12-split based on simplex splines , 2013, Math. Comput..
[32] Ming-Jun Lai,et al. Geometric interpretation of smoothness conditions of triangular polynomial patches , 1997, Comput. Aided Geom. Des..
[33] Hendrik Speleers,et al. A normalized basis for quintic Powell-Sabin splines , 2010, Comput. Aided Geom. Des..
[34] Hendrik Speleers,et al. Super-smooth cubic Powell-Sabin splines on three-directional triangulations: B-spline representation and subdivision , 2021, J. Comput. Appl. Math..
[35] Giancarlo Sangalli,et al. Unstructured spline spaces for isogeometric analysis based on spline manifolds , 2015, Comput. Aided Geom. Des..
[36] Tom Lyche,et al. Polynomial splines over locally refined box-partitions , 2013, Comput. Aided Geom. Des..
[37] A. Ženíšek,et al. A general theorem on triangular finite $C^{(m)}$-elements , 1974 .
[38] Paul Sablonnière,et al. Composite finite elements of class Ck , 1985 .
[39] Malcolm A. Sabin,et al. Piecewise Quadratic Approximations on Triangles , 1977, TOMS.
[40] Hendrik Speleers,et al. Optimizing domain parameterization in isogeometric analysis based on Powell-Sabin splines , 2015, J. Comput. Appl. Math..
[41] Xiaoping Qian,et al. Isogeometric analysis on triangulations , 2014, Comput. Aided Des..
[42] Ulrich Reif,et al. A Refineable Space of Smooth Spline Surfaces of Arbitrary Topological Genus , 1997 .
[43] Larry L. Schumaker,et al. Smooth macro-elements on Powell-Sabin-12 splits , 2005, Math. Comput..
[44] Hendrik Speleers,et al. A normalized basis for reduced Clough-Tocher splines , 2010, Comput. Aided Geom. Des..
[45] Thomas J. R. Hughes,et al. Polynomial splines of non-uniform degree on triangulations: Combinatorial bounds on the dimension , 2019, Comput. Aided Geom. Des..
[46] Tom Lyche,et al. Foundations of Spline Theory: B-Splines, Spline Approximation, and Hierarchical Refinement , 2018 .
[47] Larry L. Schumaker,et al. Super spline spaces of smoothnessr and degreed≥3r+2 , 1991 .
[48] Thomas Poeschl,et al. Detecting surface irregularities using isophotes , 1984, Comput. Aided Geom. Des..
[49] Carla Manni,et al. On the dimension of bivariate spline spaces on generalized quasi-cross-cut partitions , 1992 .
[50] T. Hughes,et al. Smooth cubic spline spaces on unstructured quadrilateral meshes with particular emphasis on extraordinary points: Geometric design and isogeometric analysis considerations , 2017 .
[51] Lyle Ramshaw,et al. Blossoms are polar forms , 1989, Comput. Aided Geom. Des..
[52] Jörg Peters,et al. Subdivision Surfaces , 2002, Handbook of Computer Aided Geometric Design.