Construction of C2 cubic splines on arbitrary triangulations

In this paper, we address the problem of constructing C cubic spline functions on a given arbitrary triangulation T . To this end, we endow every triangle of T with a Wang–Shi macrostructure. The C cubic space on such a refined triangulation has a stable dimension and optimal approximation power. Moreover, any spline function in such space can be locally built on each of the macro-triangles independently via Hermite interpolation. We provide a simplex spline basis for the space of C cubics defined on a single macro-triangle which behaves like a Bernstein/B-spline basis over the triangle. The basis functions inherit recurrence relations and differentiation formulas from the simplex spline construction, they form a nonnegative partition of unity, they admit simple conditions for C joins across the edges of neighboring triangles, and they enjoy a Marsden-like identity. Also, there is a single control net to facilitate control and early visualization of a spline function over the macro-triangle. Thanks to these properties, the complex geometry of the Wang–Shi macro-structure is transparent to the user. Stable global bases for the full space of C cubics on the Wang–Shi refined triangulation T are deduced from the local simplex spline basis by extending the concept of minimal determining sets.

[1]  Bernard Mourrain,et al.  Geometrically smooth spline bases for data fitting and simulation , 2020, Comput. Aided Geom. Des..

[2]  Larry L. Schumaker,et al.  Macro-elements and stable local bases for splines on Powell-Sabin triangulations , 2003, Math. Comput..

[3]  Tom Lyche,et al.  Simplex-splines on the Clough-Tocher element , 2018, Comput. Aided Geom. Des..

[4]  Mario Kapl,et al.  An isogeometric C1 subspace on unstructured multi-patch planar domains , 2019, Comput. Aided Geom. Des..

[5]  Zhonggui Chen,et al.  Surface reconstruction using simplex splines on feature-sensitive configurations , 2017, Comput. Aided Geom. Des..

[6]  Hendrik Speleers,et al.  THB-splines: The truncated basis for hierarchical splines , 2012, Comput. Aided Geom. Des..

[7]  Andrea Bressan,et al.  Approximation in FEM, DG and IGA: a theoretical comparison , 2018, Numerische Mathematik.

[8]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[9]  Hendrik Speleers,et al.  Isogeometric analysis with Powell–Sabin splines for advection–diffusion–reaction problems , 2012 .

[10]  Hendrik Speleers,et al.  Construction of Normalized B-Splines for a Family of Smooth Spline Spaces Over Powell–Sabin Triangulations , 2013 .

[11]  Larry L. Schumaker,et al.  Macro-elements and stable local bases for splines on Clough-Tocher triangulations , 2001, Numerische Mathematik.

[12]  Timon Rabczuk,et al.  Isogeometric analysis with strong multipatch C1-coupling , 2018, Comput. Aided Geom. Des..

[13]  Juan Cao,et al.  A finite element framework based on bivariate simplex splines on triangle configurations , 2019 .

[14]  Hendrik Speleers A new B-spline representation for cubic splines over Powell-Sabin triangulations , 2015, Comput. Aided Geom. Des..

[15]  W. Boehm,et al.  Bezier and B-Spline Techniques , 2002 .

[16]  Marian Neamtu,et al.  Delaunay configurations and multivariate splines: A generalization of a result of B. N. Delaunay , 2007 .

[17]  Hendrik Speleers,et al.  Construction and analysis of cubic Powell-Sabin B-splines , 2017, Comput. Aided Geom. Des..

[18]  Michel Bercovier,et al.  Smooth Bézier Surfaces over Unstructured Quadrilateral Meshes , 2014, 1412.1125.

[19]  Hendrik Speleers,et al.  Explicit error estimates for spline approximation of arbitrary smoothness in isogeometric analysis , 2020, Numerische Mathematik.

[20]  Larry L. Schumaker,et al.  Smooth Macro-Elements Based on Powell–Sabin Triangle Splits , 2002, Adv. Comput. Math..

[21]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[22]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[23]  Dwight Diener,et al.  Instability in the dimension of spaces of bivariate piecewise polynomials of degree 2 r and smoothness order r , 1990 .

[24]  Jan Grošelj A normalized representation of super splines of arbitrary degree on Powell–Sabin triangulations , 2016 .

[25]  Hendrik Speleers,et al.  A Family of Smooth Quasi-interpolants Defined Over Powell–Sabin Triangulations , 2015 .

[26]  C. Micchelli On a numerically efficient method for computing multivariate B-splines , 1979 .

[27]  T. Lyche,et al.  Stable Simplex Spline Bases for $$C^3$$C3 Quintics on the Powell–Sabin 12-Split , 2015, 1504.02628.

[28]  Paul Dierckx,et al.  On calculating normalized Powell-Sabin B-splines , 1997, Comput. Aided Geom. Des..

[29]  Xiaoping Qian,et al.  Isogeometric Shape Optimization on Triangulations , 2016, DAC 2016.

[30]  Ren-Hong Wang,et al.  Multivariate spline spaces , 1983 .

[31]  Tom Lyche,et al.  A B-spline-like basis for the Powell-Sabin 12-split based on simplex splines , 2013, Math. Comput..

[32]  Ming-Jun Lai,et al.  Geometric interpretation of smoothness conditions of triangular polynomial patches , 1997, Comput. Aided Geom. Des..

[33]  Hendrik Speleers,et al.  A normalized basis for quintic Powell-Sabin splines , 2010, Comput. Aided Geom. Des..

[34]  Hendrik Speleers,et al.  Super-smooth cubic Powell-Sabin splines on three-directional triangulations: B-spline representation and subdivision , 2021, J. Comput. Appl. Math..

[35]  Giancarlo Sangalli,et al.  Unstructured spline spaces for isogeometric analysis based on spline manifolds , 2015, Comput. Aided Geom. Des..

[36]  Tom Lyche,et al.  Polynomial splines over locally refined box-partitions , 2013, Comput. Aided Geom. Des..

[37]  A. Ženíšek,et al.  A general theorem on triangular finite $C^{(m)}$-elements , 1974 .

[38]  Paul Sablonnière,et al.  Composite finite elements of class Ck , 1985 .

[39]  Malcolm A. Sabin,et al.  Piecewise Quadratic Approximations on Triangles , 1977, TOMS.

[40]  Hendrik Speleers,et al.  Optimizing domain parameterization in isogeometric analysis based on Powell-Sabin splines , 2015, J. Comput. Appl. Math..

[41]  Xiaoping Qian,et al.  Isogeometric analysis on triangulations , 2014, Comput. Aided Des..

[42]  Ulrich Reif,et al.  A Refineable Space of Smooth Spline Surfaces of Arbitrary Topological Genus , 1997 .

[43]  Larry L. Schumaker,et al.  Smooth macro-elements on Powell-Sabin-12 splits , 2005, Math. Comput..

[44]  Hendrik Speleers,et al.  A normalized basis for reduced Clough-Tocher splines , 2010, Comput. Aided Geom. Des..

[45]  Thomas J. R. Hughes,et al.  Polynomial splines of non-uniform degree on triangulations: Combinatorial bounds on the dimension , 2019, Comput. Aided Geom. Des..

[46]  Tom Lyche,et al.  Foundations of Spline Theory: B-Splines, Spline Approximation, and Hierarchical Refinement , 2018 .

[47]  Larry L. Schumaker,et al.  Super spline spaces of smoothnessr and degreed≥3r+2 , 1991 .

[48]  Thomas Poeschl,et al.  Detecting surface irregularities using isophotes , 1984, Comput. Aided Geom. Des..

[49]  Carla Manni,et al.  On the dimension of bivariate spline spaces on generalized quasi-cross-cut partitions , 1992 .

[50]  T. Hughes,et al.  Smooth cubic spline spaces on unstructured quadrilateral meshes with particular emphasis on extraordinary points: Geometric design and isogeometric analysis considerations , 2017 .

[51]  Lyle Ramshaw,et al.  Blossoms are polar forms , 1989, Comput. Aided Geom. Des..

[52]  Jörg Peters,et al.  Subdivision Surfaces , 2002, Handbook of Computer Aided Geometric Design.