Molecular Cloning and Physical Mapping of the Daptomycin Gene Cluster from Streptomyces roseosporus

ABSTRACT The daptomycin biosynthetic gene cluster of Streptomyces roseosporus was analyzed by Tn5099 mutagenesis, molecular cloning, partial DNA sequencing, and insertional mutagenesis with cloned segments of DNA. The daptomycin biosynthetic gene cluster spans at least 50 kb and is located about 400 to 500 kb from one end of the ∼7,100-kb linear chromosome. We identified two peptide synthetase coding regions interrupted by a 10- to 20-kb region that may encode other functions in lipopeptide biosynthesis.

[1]  P. Leblond,et al.  The unstable region of Streptomyces ambofaciens includes 210 kb terminal inverted repeats flanking the extremities of the linear chromosomal DNA , 1996, Molecular microbiology.

[2]  J. Devereux,et al.  A comprehensive set of sequence analysis programs for the VAX , 1984, Nucleic Acids Res..

[3]  H. von Döhren,et al.  A nonribosomal system of peptide biosynthesis. , 1996, European journal of biochemistry.

[4]  H. Kinashi,et al.  A set of ordered cosmids and a detailed genetic and physical map for the 8 Mb Streptomyces coelicolor A3(2) chromosome , 1996, Molecular microbiology.

[5]  P. Solenberg,et al.  Tn5099, a xylE promoter probe transposon for Streptomyces spp , 1991, Journal of bacteriology.

[6]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[7]  P. Solenberg,et al.  Hypertransposing derivatives of the streptomycete insertion sequence IS493. , 1994, Gene.

[8]  M. Debono,et al.  Deacylation of A21978C, an acidic lipopeptide antibiotic complex, by Actinoplanes utahensis. , 1988, The Journal of antibiotics.

[9]  P. Solenberg,et al.  Transposition of Tn5096 and other IS493 derivatives in Streptomyces griseofuscus , 1991, Journal of bacteriology.

[10]  R. H. Baltz,et al.  Use of rpsL for dominance selection and gene replacement in Streptomyces roseosporus , 1997, Journal of bacteriology.

[11]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[12]  R. H. Baltz Genetic recombination in Streptomyces fradiae by protoplast fusion and cell regeneration. , 1978, Journal of general microbiology.

[13]  J. Cullum,et al.  Physical map of the Streptomyces lividans 66 genome and comparison with that of the related strain Streptomyces coelicolor A3(2) , 1993, Journal of bacteriology.

[14]  P. Wessels,et al.  Biosynthesis of acylpeptidolactones of the daptomycin type. A comparative analysis of peptide synthetases forming A21978C and A54145. , 1996, European journal of biochemistry.

[15]  J. Speyer A simple and effective electroporation apparatus. , 1990, BioTechniques.

[16]  T. Stachelhaus,et al.  Modular structure of genes encoding multifunctional peptide synthetases required for non-ribosomal peptide synthesis. , 1995, FEMS microbiology letters.

[17]  R. H. Baltz LIPOPEPTIDE ANTIBIOTICS PRODUCED BY STREPTOMYCES ROSEOSPORUS AND STREPTOMYCES FRADIAE , 1997 .

[18]  R. Molloy,et al.  Enzymatic and chemical modifications of lipopeptide antibiotic A21978C: the synthesis and evaluation of daptomycin (LY146032). , 1988, The Journal of antibiotics.

[19]  C. Yanisch-Perron,et al.  Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. , 1985, Gene.

[20]  G. Jamieson,et al.  New polymorphism of platelet membrane glycoproteins , 1977, Nature.

[21]  R. H. Baltz,et al.  Industrial Microorganisms: Basic and Applied Molecular Genetics , 1993 .

[22]  A. Demain,et al.  δ-(L-α-Aminoadipyl)-L-Cysteinyl-D-Valine Synthetase, the Multienzyme Integrating the Four Primary Reactions in β-Lactam Biosynthesis, as a Model Peptide Synthetase , 1993, Bio/Technology.

[23]  D. Hopwood,et al.  The chromosomal DNA of Streptomyces lividans 66 is linear , 1993, Molecular microbiology.

[24]  M. Boaretti,et al.  Lipoteichoic acid as a target for antimicrobial action. , 1996, Microbial drug resistance.

[25]  W. Herlihy,et al.  A21978C, a complex of new acidic peptide antibiotics: isolation, chemistry, and mass spectral structure elucidation. , 1987, The Journal of antibiotics.

[26]  K. O'Brien,et al.  Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. , 1992, Gene.

[27]  T. Stachelhaus,et al.  Rational design of peptide antibiotics by targeted replacement of bacterial and fungal domains. , 1995, Science.

[28]  T. Stachelhaus,et al.  Engineered biosynthesis of peptide antibiotics. , 1996, Biochemical pharmacology.

[29]  R. H. Baltz,et al.  Gene transfer and transposition mutagenesis in Streptomyces roseosporus: mapping of insertions that influence daptomycin or pigment production. , 1996, Microbiology.

[30]  T. Stein,et al.  The Multiple Carrier Model of Nonribosomal Peptide Biosynthesis at Modular Multienzymatic Templates* , 1996, The Journal of Biological Chemistry.

[31]  T. Stachelhaus,et al.  Biochemical characterization of peptidyl carrier protein (PCP), the thiolation domain of multifunctional peptide synthetases. , 1996, Chemistry & biology.

[32]  D. Berg,et al.  Inversions and deletions generated by a mini-gamma delta (Tn1000) transposon , 1994, Journal of bacteriology.

[33]  H. von Döhren,et al.  Nucleotide binding by multienzyme peptide synthetases. , 1994, European journal of biochemistry.

[34]  A. Pühler,et al.  A Broad Host Range Mobilization System for In Vivo Genetic Engineering: Transposon Mutagenesis in Gram Negative Bacteria , 1983, Bio/Technology.