On solving elliptic stochastic partial differential equations

Abstract A model elliptic boundary value problem of second order, with stochastic coefficients described by the Karhunen–Loeve expansion is addressed. This problem is transformed into an equivalent deterministic one. The perturbation method and the method of successive approximations is analyzed. Rigorous error estimates in the framework of Sobolev spaces are given.

[1]  Masanobu Shinozuka,et al.  Response Variability of Stochastic Finite Element Systems , 1988 .

[2]  Harry L. Van Trees,et al.  Detection, Estimation, and Modulation Theory, Part I , 1968 .

[3]  Pierre Priouret,et al.  Adaptive Algorithms and Stochastic Approximations , 1990, Applications of Mathematics.

[4]  Mircea Grigoriu,et al.  STOCHASTIC FINITE ELEMENT ANALYSIS OF SIMPLE BEAMS , 1983 .

[5]  Martin Ostoja-Starzewski,et al.  Stochastic finite elements as a bridge between random material microstructure and global response , 1999 .

[6]  D. Xiu,et al.  Modeling uncertainty in flow-structure interactions , 2001 .

[7]  Bernt Øksendal,et al.  Stochastic Partial Differential Equations: A Modeling, White Noise Functional Approach , 1996 .

[8]  Ivo Babuška,et al.  Damage analysis of fiber composites Part I: Statistical analysis on fiber scale , 1999 .

[9]  Isaac Elishakoff,et al.  The bird's eye view on finite element method for structures with large stochastic variations , 1999 .

[10]  M. Rao Probability theory with applications , 1984 .

[11]  D. Xiu,et al.  Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .

[12]  Ivo Babuška,et al.  On solving stochastic initial-value differential equations , 2003 .

[13]  Thomas L. Marzetta,et al.  Detection, Estimation, and Modulation Theory , 1976 .

[14]  Roger Ghanem,et al.  Numerical solution of spectral stochastic finite element systems , 1996 .

[15]  Wing Kam Liu,et al.  Random field finite elements , 1986 .

[16]  H. Matthies,et al.  Finite elements for stochastic media problems , 1999 .

[17]  Roger Ghanem,et al.  Ingredients for a general purpose stochastic finite elements implementation , 1999 .

[18]  森山 昌彦,et al.  「確率有限要素法」(Stochastic Finite Element Method) , 1985 .

[19]  John Red-Horse,et al.  Propagation of probabilistic uncertainty in complex physical systems using a stochastic finite element approach , 1999 .

[20]  B. Øksendal Stochastic differential equations : an introduction with applications , 1987 .

[21]  Ivo Babuška,et al.  SOLVING STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS BASED ON THE EXPERIMENTAL DATA , 2003 .

[22]  R. Ghanem,et al.  Stochastic Finite Element Expansion for Random Media , 1989 .

[23]  Humberto Contreras,et al.  The stochastic finite-element method , 1980 .

[24]  Patrick J. Roache,et al.  Verification and Validation in Computational Science and Engineering , 1998 .

[25]  I. Babuska,et al.  Solution of stochastic partial differential equations using Galerkin finite element techniques , 2001 .

[26]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[27]  Roger Ghanem,et al.  Stochastic Finite Element Analysis for Multiphase Flow in Heterogeneous Porous Media , 1998 .

[28]  M. Shinozuka,et al.  A probabilistic model for spatial distribution of material properties , 1976 .