Image coding using wavelet transform

A scheme for image compression that takes into account psychovisual features both in the space and frequency domains is proposed. This method involves two steps. First, a wavelet transform used in order to obtain a set of biorthogonal subclasses of images: the original image is decomposed at different scales using a pyramidal algorithm architecture. The decomposition is along the vertical and horizontal directions and maintains constant the number of pixels required to describe the image. Second, according to Shannon's rate distortion theory, the wavelet coefficients are vector quantized using a multiresolution codebook. To encode the wavelet coefficients, a noise shaping bit allocation procedure which assumes that details at high resolution are less visible to the human eye is proposed. In order to allow the receiver to recognize a picture as quickly as possible at minimum cost, a progressive transmission scheme is presented. It is shown that the wavelet transform is particularly well adapted to progressive transmission.

[1]  R. Gray,et al.  Vector quantization , 1984, IEEE ASSP Magazine.

[2]  G. Battle A block spin construction of ondelettes. Part I: Lemarié functions , 1987 .

[3]  M. Barlaud,et al.  Compression d'image par transformée en ondelette et quantification vectorielle , 1990 .

[4]  Jan Biemond,et al.  Progressive transmission of images using subband coding , 1989, International Conference on Acoustics, Speech, and Signal Processing,.

[5]  Y. Meyer Principe d'incertitude, bases hilbertiennes et algèbres d'opérateurs , 1986 .

[6]  Michel Barlaud,et al.  Compression d'images par transformée en ondelette , 1989 .

[7]  J. Robson,et al.  Application of fourier analysis to the visibility of gratings , 1968, The Journal of physiology.

[8]  John W. Woods,et al.  Sliding block entropy coding of images , 1989, International Conference on Acoustics, Speech, and Signal Processing,.

[9]  Peter H. Westerink,et al.  Subband coding of images using vector quantization , 1988, IEEE Trans. Commun..

[10]  Jean-Christophe Feauveau Analyse multiresolution par ondelettes non orthogonales et bancs de filtres numeriques , 1990 .

[11]  Martin Vetterli,et al.  Wavelets and filter banks: relationships and new results , 1990, International Conference on Acoustics, Speech, and Signal Processing.

[12]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[13]  I. Daubechies,et al.  PAINLESS NONORTHOGONAL EXPANSIONS , 1986 .

[14]  John W. Woods,et al.  Subband coding of images , 1986, IEEE Trans. Acoust. Speech Signal Process..

[15]  Jerome M. Shapiro,et al.  Embedded image coding using zerotrees of wavelet coefficients , 1993, IEEE Trans. Signal Process..

[16]  Robert M. Gray,et al.  Pruned tree-structured vector quantization in image coding , 1989, International Conference on Acoustics, Speech, and Signal Processing,.

[17]  Allen Gersho,et al.  Asymptotically optimal block quantization , 1979, IEEE Trans. Inf. Theory.

[18]  Robert M. Gray,et al.  An Algorithm for Vector Quantizer Design , 1980, IEEE Trans. Commun..

[19]  Eero P. Simoncelli,et al.  Non-separable extensions of quadrature mirror filters to multiple dimensions , 1990, Proc. IEEE.

[20]  I. Daubechies Orthonormal bases of compactly supported wavelets II: variations on a theme , 1993 .

[21]  Martin Vetterli,et al.  Splitting a signal into subsampled channels allowing perfect reconstruction , 1985 .

[22]  N. J. A. Sloane,et al.  A lower bound on the average error of vector quantizers , 1985, IEEE Trans. Inf. Theory.

[23]  Nasser M. Nasrabadi,et al.  Image coding using vector quantization: a review , 1988, IEEE Trans. Commun..

[24]  V. Algazi,et al.  Useful Approximations to Optimum Quantization , 1966 .

[25]  Ingrid Daubechies,et al.  The wavelet transform, time-frequency localization and signal analysis , 1990, IEEE Trans. Inf. Theory.

[26]  Edward H. Adelson,et al.  The Laplacian Pyramid as a Compact Image Code , 1983, IEEE Trans. Commun..

[27]  R. Coifman,et al.  Fast wavelet transforms and numerical algorithms I , 1991 .

[28]  Yo-Sung Ho,et al.  Variable-rate multi-stage vector quantization for image coding , 1988, ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing.

[29]  Allen Gersho,et al.  On the structure of vector quantizers , 1982, IEEE Trans. Inf. Theory.

[30]  Michel Barlaud,et al.  Image coding using vector quantization in the wavelet transform domain , 1990, International Conference on Acoustics, Speech, and Signal Processing.

[31]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  Mark J. T. Smith,et al.  Exact reconstruction techniques for tree-structured subband coders , 1986, IEEE Trans. Acoust. Speech Signal Process..

[33]  Y. Meyer,et al.  Ondelettes et bases hilbertiennes. , 1986 .

[34]  A. Grossmann,et al.  DECOMPOSITION OF HARDY FUNCTIONS INTO SQUARE INTEGRABLE WAVELETS OF CONSTANT SHAPE , 1984 .

[35]  Paul L. Zador,et al.  Asymptotic quantization error of continuous signals and the quantization dimension , 1982, IEEE Trans. Inf. Theory.

[36]  M. Barlaud,et al.  Wavelet transform image coding using vector quantization , 1989, Sixth Multidimensional Signal Processing Workshop,.