Second-Order Quantifier Elimination on Relational Monadic Formulas - A Basic Method and Some Less Expected Applications
暂无分享,去创建一个
[1] Valentin Goranko,et al. Elementary Canonical Formulae: A Survey on Syntactic, Algorithmic, and Model?theoretic Aspects , 2004, Advances in Modal Logic.
[2] Heinrich Behmann,et al. Beiträge zur Algebra der Logik, insbesondere zum Entscheidungsproblem , 1922 .
[3] Harald Ganzinger,et al. Superposition with Simplification as a Desision Procedure for the Monadic Class with Equality , 1993, Kurt Gödel Colloquium.
[4] Klaus Schneider. Verification of Reactive Systems , 2004, Texts in Theoretical Computer Science.
[5] H. Bedmann,et al. Beiträge zur Algebra der Logik, insbesondere zum Entscheidungsproblem , 1922 .
[6] Dov M. Gabbay,et al. Quantifier Elimination in Second-Order Predicate Logic , 1992, KR.
[7] Patrick Koopmann,et al. Count and Forget: Uniform Interpolation of $\mathcal{SHQ}$ -Ontologies , 2014, IJCAR.
[8] Hosam M. Mahmoud,et al. Analysis of the Space of Search Trees under the Random Insertion Algorithm , 1989, J. Algorithms.
[9] A. Szałas,et al. A Fixpoint Approach to Second-Order Quantifier Elimination with Applications to Correspondence Theory , 1999 .
[10] Carsten Lutz,et al. Foundations for Uniform Interpolation and Forgetting in Expressive Description Logics , 2011, IJCAI.
[11] Patrick Koopmann,et al. Uniform Interpolation and Forgetting for ALC Ontologies with ABoxes , 2014, AAAI.
[12] Neil V. Murray,et al. Tableaux, Path Dissolution, and Decomposable Negation Normal Form for Knowledge Compilation , 2003, TABLEAUX.
[13] Uwe Egly. On the Value of Antiprenexing , 1994, LPAR.
[14] W. V. Quine. On the Logic of Quantification , 1945, J. Symb. Log..
[15] Valentin Goranko,et al. Algorithmic correspondence and completeness in modal logic. I. The core algorithm SQEMA , 2006, Log. Methods Comput. Sci..
[16] Willem Conradie,et al. On the strength and scope of DLS , 2006, J. Appl. Non Class. Logics.
[17] Christoph Wernhard,et al. Heinrich Behmann's Contributions to Second-Order Quantifier Elimination from the View of Computational Logic , 2017, ArXiv.
[18] Boris Konev,et al. Practical Uniform Interpolation and Forgetting for ALC TBoxes with Applications to Logical Difference , 2014, KR.
[19] Diego Calvanese,et al. Tractable Reasoning and Efficient Query Answering in Description Logics: The DL-Lite Family , 2007, Journal of Automated Reasoning.
[20] Richard Zach,et al. Completeness Before Post: Bernays, Hilbert, and the Development of Propositional Logic , 1999, Bulletin of Symbolic Logic.
[21] U. Hustadt,et al. A Survey of Decidable First-Order Fragments and Description Logics , 2004 .
[22] J. Gustafsson. An Implementation and Optimization of an Algorithm for Reducing Formulae in Second-Order Logic , 1996 .
[23] Yuri Gurevich,et al. The Classical Decision Problem , 1997, Perspectives in Mathematical Logic.
[24] Harry R. Lewis,et al. Complexity Results for Classes of Quantificational Formulas , 1980, J. Comput. Syst. Sci..
[25] Jeff Z. Pan,et al. Forgetting for knowledge bases in DL-Lite , 2010, Annals of Mathematics and Artificial Intelligence.
[26] Diego Calvanese,et al. The DL-Lite Family and Relations , 2009, J. Artif. Intell. Res..
[27] Valentin Goranko,et al. Algorithmic correspondence and completeness in modal logic. I. The core algorithm SQEMA , 2006, Log. Methods Comput. Sci..
[28] P. Koopmann,et al. Uniform Interpolation of ALC-Ontologies Using Fixpoints , 2013 .
[29] Christoph Wernhard,et al. Abduction in Logic Programming as Second-Order Quantifier Elimination , 2013, FroCos.
[30] J.F.A.K. van Benthem,et al. Modal logic and classical logic , 1983 .
[31] Christoph Wernhard,et al. Tableaux for Projection Computation and Knowledge Compilation , 2009, TABLEAUX.
[32] Wilhelm Ackermann,et al. Zum Eliminationsproblem der mathematischen Logik , 1935 .
[33] Patrick Koopmann,et al. Uniform Interpolation of -Ontologies Using Fixpoints , 2013, FroCos.
[34] Sergey Bereg,et al. Monadic Decomposition , 2014, CAV.
[35] William Craig,et al. Elimination problems in logic: a brief history , 2008, Synthese.
[36] Frank Wolter,et al. Logic-based ontology comparison and module extraction, with an application to DL-Lite , 2010, Artif. Intell..
[37] Patrick Doherty,et al. Computing Circumscription Revisited: A Reduction Algorithm , 1997, Journal of Automated Reasoning.
[38] Paolo Mancosu,et al. HEINRICH BEHMANN’S 1921 LECTURE ON THE DECISION PROBLEM AND THE ALGEBRA OF LOGIC , 2015, The Bulletin of Symbolic Logic.
[39] Valentin Goranko,et al. SCAN Is Complete for All Sahlqvist Formulae , 2003, RelMiCS.
[40] Renate A. Schmidt,et al. The Ackermann approach for modal logic, correspondence theory and second-order reduction , 2012, J. Appl. Log..
[41] Christian G. Fermüller,et al. Resolution Decision Procedures , 2001, Handbook of Automated Reasoning.
[42] Leopold Löwenheim. Über Möglichkeiten im Relativkalkül , 1915 .
[43] Diego Calvanese,et al. Relationships with other Formalisms , 2003, Description Logic Handbook.
[44] M. de Rijke,et al. Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.
[45] W. Ackermann. Untersuchungen über das Eliminationsproblem der mathematischen Logik , 1935 .
[46] Dov M. Gabbay,et al. Second-Order Quantifier Elimination - Foundations, Computational Aspects and Applications , 2008, Studies in logic : Mathematical logic and foundations.
[47] Renate A. Schmidt,et al. Forgetting Concept and Role Symbols in ALCOIHµ+(∇, ⊓)-Ontologies , 2016, IJCAI.
[48] Christoph Weidenbach,et al. Computing Small Clause Normal Forms , 2001, Handbook of Automated Reasoning.
[49] Henrik Sahlqvist. Completeness and Correspondence in the First and Second Order Semantics for Modal Logic , 1975 .
[50] Boris Konev,et al. Forgetting and Uniform Interpolation in Large-Scale Description Logic Terminologies , 2009, IJCAI.
[51] Carsten Lutz,et al. Did I Damage My Ontology? A Case for Conservative Extensions in Description Logics , 2006, KR.