Second-Order Quantifier Elimination on Relational Monadic Formulas - A Basic Method and Some Less Expected Applications

For relational monadic formulas the Lowenheim class second-order quantifier elimination, which is closely related to computation of uniform interpolants, forgetting and projection, always succeeds. The decidability proof for this class by Behmann from 1922 explicitly proceeds by elimination with equivalence preserving formula rewriting. We reconstruct Behmann's method, relate it to the modern DLS elimination algorithm and show some applications where the essential monadicity becomes apparent only at second sight. In particular, deciding $\mathcal{ALCOQH}$ knowledge bases, elimination in DL-Lite knowledge bases, and the justification of the success of elimination methods for Sahlqvist formulas.

[1]  Valentin Goranko,et al.  Elementary Canonical Formulae: A Survey on Syntactic, Algorithmic, and Model?theoretic Aspects , 2004, Advances in Modal Logic.

[2]  Heinrich Behmann,et al.  Beiträge zur Algebra der Logik, insbesondere zum Entscheidungsproblem , 1922 .

[3]  Harald Ganzinger,et al.  Superposition with Simplification as a Desision Procedure for the Monadic Class with Equality , 1993, Kurt Gödel Colloquium.

[4]  Klaus Schneider Verification of Reactive Systems , 2004, Texts in Theoretical Computer Science.

[5]  H. Bedmann,et al.  Beiträge zur Algebra der Logik, insbesondere zum Entscheidungsproblem , 1922 .

[6]  Dov M. Gabbay,et al.  Quantifier Elimination in Second-Order Predicate Logic , 1992, KR.

[7]  Patrick Koopmann,et al.  Count and Forget: Uniform Interpolation of $\mathcal{SHQ}$ -Ontologies , 2014, IJCAR.

[8]  Hosam M. Mahmoud,et al.  Analysis of the Space of Search Trees under the Random Insertion Algorithm , 1989, J. Algorithms.

[9]  A. Szałas,et al.  A Fixpoint Approach to Second-Order Quantifier Elimination with Applications to Correspondence Theory , 1999 .

[10]  Carsten Lutz,et al.  Foundations for Uniform Interpolation and Forgetting in Expressive Description Logics , 2011, IJCAI.

[11]  Patrick Koopmann,et al.  Uniform Interpolation and Forgetting for ALC Ontologies with ABoxes , 2014, AAAI.

[12]  Neil V. Murray,et al.  Tableaux, Path Dissolution, and Decomposable Negation Normal Form for Knowledge Compilation , 2003, TABLEAUX.

[13]  Uwe Egly On the Value of Antiprenexing , 1994, LPAR.

[14]  W. V. Quine On the Logic of Quantification , 1945, J. Symb. Log..

[15]  Valentin Goranko,et al.  Algorithmic correspondence and completeness in modal logic. I. The core algorithm SQEMA , 2006, Log. Methods Comput. Sci..

[16]  Willem Conradie,et al.  On the strength and scope of DLS , 2006, J. Appl. Non Class. Logics.

[17]  Christoph Wernhard,et al.  Heinrich Behmann's Contributions to Second-Order Quantifier Elimination from the View of Computational Logic , 2017, ArXiv.

[18]  Boris Konev,et al.  Practical Uniform Interpolation and Forgetting for ALC TBoxes with Applications to Logical Difference , 2014, KR.

[19]  Diego Calvanese,et al.  Tractable Reasoning and Efficient Query Answering in Description Logics: The DL-Lite Family , 2007, Journal of Automated Reasoning.

[20]  Richard Zach,et al.  Completeness Before Post: Bernays, Hilbert, and the Development of Propositional Logic , 1999, Bulletin of Symbolic Logic.

[21]  U. Hustadt,et al.  A Survey of Decidable First-Order Fragments and Description Logics , 2004 .

[22]  J. Gustafsson An Implementation and Optimization of an Algorithm for Reducing Formulae in Second-Order Logic , 1996 .

[23]  Yuri Gurevich,et al.  The Classical Decision Problem , 1997, Perspectives in Mathematical Logic.

[24]  Harry R. Lewis,et al.  Complexity Results for Classes of Quantificational Formulas , 1980, J. Comput. Syst. Sci..

[25]  Jeff Z. Pan,et al.  Forgetting for knowledge bases in DL-Lite , 2010, Annals of Mathematics and Artificial Intelligence.

[26]  Diego Calvanese,et al.  The DL-Lite Family and Relations , 2009, J. Artif. Intell. Res..

[27]  Valentin Goranko,et al.  Algorithmic correspondence and completeness in modal logic. I. The core algorithm SQEMA , 2006, Log. Methods Comput. Sci..

[28]  P. Koopmann,et al.  Uniform Interpolation of ALC-Ontologies Using Fixpoints , 2013 .

[29]  Christoph Wernhard,et al.  Abduction in Logic Programming as Second-Order Quantifier Elimination , 2013, FroCos.

[30]  J.F.A.K. van Benthem,et al.  Modal logic and classical logic , 1983 .

[31]  Christoph Wernhard,et al.  Tableaux for Projection Computation and Knowledge Compilation , 2009, TABLEAUX.

[32]  Wilhelm Ackermann,et al.  Zum Eliminationsproblem der mathematischen Logik , 1935 .

[33]  Patrick Koopmann,et al.  Uniform Interpolation of -Ontologies Using Fixpoints , 2013, FroCos.

[34]  Sergey Bereg,et al.  Monadic Decomposition , 2014, CAV.

[35]  William Craig,et al.  Elimination problems in logic: a brief history , 2008, Synthese.

[36]  Frank Wolter,et al.  Logic-based ontology comparison and module extraction, with an application to DL-Lite , 2010, Artif. Intell..

[37]  Patrick Doherty,et al.  Computing Circumscription Revisited: A Reduction Algorithm , 1997, Journal of Automated Reasoning.

[38]  Paolo Mancosu,et al.  HEINRICH BEHMANN’S 1921 LECTURE ON THE DECISION PROBLEM AND THE ALGEBRA OF LOGIC , 2015, The Bulletin of Symbolic Logic.

[39]  Valentin Goranko,et al.  SCAN Is Complete for All Sahlqvist Formulae , 2003, RelMiCS.

[40]  Renate A. Schmidt,et al.  The Ackermann approach for modal logic, correspondence theory and second-order reduction , 2012, J. Appl. Log..

[41]  Christian G. Fermüller,et al.  Resolution Decision Procedures , 2001, Handbook of Automated Reasoning.

[42]  Leopold Löwenheim Über Möglichkeiten im Relativkalkül , 1915 .

[43]  Diego Calvanese,et al.  Relationships with other Formalisms , 2003, Description Logic Handbook.

[44]  M. de Rijke,et al.  Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.

[45]  W. Ackermann Untersuchungen über das Eliminationsproblem der mathematischen Logik , 1935 .

[46]  Dov M. Gabbay,et al.  Second-Order Quantifier Elimination - Foundations, Computational Aspects and Applications , 2008, Studies in logic : Mathematical logic and foundations.

[47]  Renate A. Schmidt,et al.  Forgetting Concept and Role Symbols in ALCOIHµ+(∇, ⊓)-Ontologies , 2016, IJCAI.

[48]  Christoph Weidenbach,et al.  Computing Small Clause Normal Forms , 2001, Handbook of Automated Reasoning.

[49]  Henrik Sahlqvist Completeness and Correspondence in the First and Second Order Semantics for Modal Logic , 1975 .

[50]  Boris Konev,et al.  Forgetting and Uniform Interpolation in Large-Scale Description Logic Terminologies , 2009, IJCAI.

[51]  Carsten Lutz,et al.  Did I Damage My Ontology? A Case for Conservative Extensions in Description Logics , 2006, KR.