Identifying quenched jets in heavy ion collisions with machine learning

[1]  S. L. La Pointe,et al.  Measurement of the Groomed Jet Radius and Momentum Splitting Fraction in pp and Pb-Pb Collisions at sqrt[s_{NN}]=5.02  TeV. , 2022, Physical review letters.

[2]  J. Mulligan,et al.  The information content of jet quenching and machine learning assisted observable design , 2021, Journal of High Energy Physics.

[3]  A. S. Nunes,et al.  Differential measurements of jet substructure and partonic energy loss in Au$+$Au collisions at $\sqrt{s_{\rm{NN}}} =200$ GeV , 2021, 2109.09793.

[4]  S. M. Etesami,et al.  Study of quark and gluon jet substructure in Z+jet and dijet events from pp collisions , 2021, Journal of High Energy Physics.

[5]  Alice Collaboration Measurements of the groomed and ungroomed jet angularities in pp collisions at $\sqrt{s} = 5.02$ TeV , 2021, 2107.11303.

[6]  K. Tywoniuk,et al.  Jet Tomography in Heavy-Ion Collisions with Deep Learning. , 2021, Physical review letters.

[7]  N. Castro,et al.  Deep Learning for the classification of quenched jets , 2021, Journal of High Energy Physics.

[8]  Huilin Qu,et al.  Jet tagging in the Lund plane with graph networks , 2020, Journal of High Energy Physics.

[9]  K. Tywoniuk,et al.  Deep learning jet modifications in heavy-ion collisions , 2020, Journal of High Energy Physics.

[10]  J. Mulligan,et al.  Identifying groomed jet splittings in heavy-ion collisions , 2020, Physical Review C.

[11]  Atlas Collaboration,et al.  Measurement of the Lund jet plane using charged particles in 13 TeV proton-proton collisions with the ATLAS detector , 2020, 2004.03540.

[12]  Atlas Collaboration Measurement of soft-drop jet observables in pp collisions with the ATLAS detector at √s = 13 TeV , 2019, 1912.09837.

[13]  Natalia Gimelshein,et al.  PyTorch: An Imperative Style, High-Performance Deep Learning Library , 2019, NeurIPS.

[14]  Atlas Collaboration Measurement of angular and momentum distributions of charged particles within and around jets in Pb+Pb and $pp$ collisions at $\sqrt{s_{\mathrm{NN}}} = 5.02$ TeV with the ATLAS detector , 2019, 1908.05264.

[15]  Alice Collaboration,et al.  Measurement of jet radial profiles in Pb–Pb collisions at sNN=2.76 TeV , 2019, Physics Letters B.

[16]  S. Carrazza,et al.  Jet Grooming through Reinforcement Learning , 2019, Journal of Physics: Conference Series.

[17]  Hoang Dai Nghia Nguyen,et al.  Measurement of jet-substructure observables in top quark, W boson and light jet production in proton-proton collisions at √s = 13 TeV with the ATLAS detector , 2019, 1903.02942.

[18]  Yang Song,et al.  Class-Balanced Loss Based on Effective Number of Samples , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[19]  S. Macaluso,et al.  Pulling out all the tops with computer vision and deep learning , 2018, Journal of High Energy Physics.

[20]  Matthew Nguyen,et al.  Novel tools and observables for jet physics in heavy-ion collisions , 2018, Journal of Physics G: Nuclear and Particle Physics.

[21]  Alex Sherstinsky,et al.  Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) Network , 2018, Physica D: Nonlinear Phenomena.

[22]  C. Collaboration,et al.  Measurements of the differential jet cross section as a function of the jet mass in dijet events from proton-proton collisions at $\sqrt{s} =$ 13 TeV , 2018, 1807.05974.

[23]  G. Salam,et al.  The Lund jet plane , 2018, Journal of High Energy Physics.

[24]  R. K. Elayavalli,et al.  Probing heavy ion collisions using quark and gluon jet substructure , 2018, Proceedings of International Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions — PoS(HardProbes2018).

[25]  D. Shih,et al.  Pulling out all the tops with computer vision and deep learning , 2018, Journal of High Energy Physics.

[26]  Samir R Das,et al.  First measurement of jet mass in Pb-Pb and pPb collisions at the LHC , 2017 .

[27]  R. Kunnawalkam Elayavalli,et al.  Medium response in JEWEL and its impact on jet shape observables in heavy ion collisions , 2017, Journal of High Energy Physics.

[28]  M. Spiropulu,et al.  Charged-particle nuclear modification factors in PbPb and pPb collisions at √(s_N N) = 5.02 TeV , 2017 .

[29]  M. P. Casado,et al.  Measurement of jet fragmentation in Pb+Pb and pp collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{{ , 2017, The European Physical Journal. C, Particles and Fields.

[30]  Alice Collaboration,et al.  Centrality dependence of the pseudorapidity density distribution for charged particles in Pb–Pb collisions at sNN=5.02TeV , 2016, 1612.08966.

[31]  J. G. Contreras,et al.  Measurement of jet suppression in central Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV , 2015, 1502.01689.

[32]  Andrea Benaglia,et al.  Measurement of jet fragmentation in PbPb and pp collisions at s NN =2.76 TeV , 2014 .

[33]  David W. Miller,et al.  Particle-level pileup subtraction for jets and jet shapes , 2014, 1403.3108.

[34]  G. Soyez,et al.  Soft drop , 2014, 1402.2657.

[35]  David D. Cox,et al.  Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures , 2013, ICML.

[36]  F. Krauss,et al.  A perturbative framework for jet quenching , 2012, 1212.1599.

[37]  Andrea Benaglia,et al.  Jet momentum dependence of jet quenching in PbPb collisions at sNN=2.76 TeV , 2012 .

[38]  C. Collaboration,et al.  Observation and studies of jet quenching in PbPb collisions at nucleon-nucleon center-of-mass energy = 2.76 TeV , 2011, 1102.1957.

[39]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[40]  S. H. Kim,et al.  Suppression of charged particle production at large transverse momentum in central Pb – Pb collisions at √ sNN = 2 . 76 TeV ✩ , 2010 .

[41]  M. Cacciari,et al.  The anti-$k_t$ jet clustering algorithm , 2008, 0802.1189.

[42]  Peter Skands,et al.  A brief introduction to PYTHIA 8.1 , 2007, Comput. Phys. Commun..

[43]  K. J. Foley,et al.  Transverse-momentum and collision-energy dependence of high-pT hadron suppression in Au+Au collisions at ultrarelativistic energies. , 2003, Physical review letters.

[44]  K. J. Foley,et al.  Disappearance of back-to-back high-pT hadron correlations in central Au+Au collisions at sqrt[s NN ] =200 GeV. , 2002, Physical review letters.

[45]  K. J. Foley,et al.  Centrality Dependence of High-pTHadron Suppression inAu+AuCollisions atsNN=130GeV , 2002, nucl-ex/0206011.

[46]  E. al.,et al.  Suppression of hadrons with large transverse momentum in central Au + Au collisions at √sNN = 130 GeV , 2001, nucl-ex/0109003.

[47]  S. Hochreiter,et al.  Long Short-Term Memory , 1997, Neural Computation.

[48]  S. Moretti,et al.  Better Jet Clustering Algorithms , 1997, hep-ph/9707323.

[49]  J. Bjorken Energy Loss of Energetic Partons in Quark - Gluon Plasma: Possible Extinction of High p(t) Jets in Hadron - Hadron Collisions , 1982 .

[50]  V. M. Ghete,et al.  Measurement of the splitting function in pp and PbPb collisions at sNN−−−√= 5.02 TeV , 2017 .

[51]  J. T. Childers,et al.  Measurement of charged-particle spectra in Pb+Pb collisions at sNN=2.76\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ , 2015, Journal of High Energy Physics.

[52]  J. G. Contreras,et al.  Particle-Yield Modification in Jetlike Azimuthal Dihadron Correlations in Pb-Pb Collisions at ffiffiffiffiffiffiffiffi s NN p 1⁄4 2 : 76 TeV , 2012 .

[53]  T. Spreitzer,et al.  Measurement of the jet radius and transverse momentum dependence of inclusive jet suppression in lead–lead collisions at √ s NN = 2 . 76 TeV with the ATLAS detector , 2012 .

[54]  Frank Taylor Observation of a Centrality-Dependent Dijet Asymmetry in Lead-Lead Collisions at [sqrt]sNN=2.76 TeV with the ATLAS Detector at the LHC , 2010 .

[55]  G. Aad Observation of a Centrality-Dependent Dijet Asymmetry in Lead-Lead Collisions at sqrt(S(NN))= 2.76 TeV with the ATLAS Detector at the LHC , 2010 .

[56]  D. Kim,et al.  Suppressed 0 Production at Large Transverse Momentum in Central Au Au Collisions at sNN p 200 GeV , 2003 .

[57]  K. J. Foley,et al.  Centrality dependence of high-p(T) hadron suppression in Au+Au collisions at sqrt[s(NN)]=130 GeV. , 2002, Physical review letters.