Fast estimation of true bounds on Bermudan option prices under jump-diffusion processes

Fast pricing of American-style options has been a difficult problem since it was first introduced to the financial markets in 1970s, especially when the underlying stocks’ prices follow some jump-diffusion processes. In this paper, we extend the ‘true martingale algorithm’ proposed by Belomestny et al. [Math. Finance, 2009, 19, 53–71] for the pure-diffusion models to the jump-diffusion models, to fast compute true tight upper bounds on the Bermudan option price in a non-nested simulation manner. By exploiting the martingale representation theorem on the optimal dual martingale driven by jump-diffusion processes, we are able to explore the unique structure of the optimal dual martingale and construct an approximation that preserves the martingale property. The resulting upper bound estimator avoids the nested Monte Carlo simulation suffered by the original primal–dual algorithm, therefore significantly improving the computational efficiency. Theoretical analysis is provided to guarantee the quality of the martingale approximation. Numerical experiments are conducted to verify the efficiency of our algorithm.

[1]  Nan Chen,et al.  Additive and multiplicative duals for American option pricing , 2007, Finance Stochastics.

[2]  R. C. Merton,et al.  Option pricing when underlying stock returns are discontinuous , 1976 .

[3]  Denis Belomestny,et al.  SOLVING OPTIMAL STOPPING PROBLEMS VIA EMPIRICAL DUAL OPTIMIZATION , 2013, 1309.2125.

[4]  Xiong Lin,et al.  Pricing Bermudan Options in Lévy Process Models , 2013, SIAM J. Financial Math..

[5]  Paul Glasserman,et al.  Monte Carlo Methods in Financial Engineering , 2003 .

[6]  F. Jamshidian The Duality of Optimal Exercise and Domineering Claims: a Doob-Meyer Decomposition Approach to the Snell Envelope , 2007 .

[7]  S. Kou Chapter 2 Jump-Diffusion Models for Asset Pricing in Financial Engineering , 2007 .

[8]  Steven Kou,et al.  Pricing Asian Options Under a Hyper-Exponential Jump Diffusion Model , 2012, Oper. Res..

[9]  Evis Këllezi,et al.  Valuing Bermudan options when asset returns are Lévy processes , 2004 .

[10]  L. C. G. Rogers,et al.  Pathwise Stochastic Optimal Control , 2007, SIAM J. Control. Optim..

[11]  Enlu Zhou,et al.  Parameterized penalties in the dual representation of Markov decision processes , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[12]  D. Belomestny,et al.  TRUE UPPER BOUNDS FOR BERMUDAN PRODUCTS VIA NON‐NESTED MONTE CARLO , 2009 .

[13]  Vadim Linetsky,et al.  Pricing Options in Jump-Diffusion Models: An Extrapolation Approach , 2008, Oper. Res..

[14]  Peng Sun,et al.  Information Relaxations and Duality in Stochastic Dynamic Programs , 2010, Oper. Res..

[15]  John N. Tsitsiklis,et al.  Regression methods for pricing complex American-style options , 2001, IEEE Trans. Neural Networks.

[16]  Jianing Zhang,et al.  DUAL REPRESENTATIONS FOR GENERAL MULTIPLE STOPPING PROBLEMS , 2011, 1112.2638.

[17]  Chandrasekhar Reddy Gukhal Analytical Valuation of American Options on Jump-Diffusion Processes , 2001 .

[18]  Steven Kou,et al.  A Jump Diffusion Model for Option Pricing , 2001, Manag. Sci..

[19]  Martin B. Haugh,et al.  Pricing American Options: A Duality Approach , 2001, Oper. Res..

[20]  John Schoenmakers,et al.  Optimal Dual Martingales, Their Analysis, and Application to New Algorithms for Bermudan Products , 2011, SIAM J. Financial Math..

[21]  Sven Balder,et al.  Primal–dual linear Monte Carlo algorithm for multiple stopping—an application to flexible caps , 2012 .

[22]  Kaushik I. Amin Jump Diffusion Option Valuation in Discrete Time , 1993 .

[23]  Mark Broadie,et al.  A Primal-Dual Simulation Algorithm for Pricing Multi-Dimensional American Options , 2001 .

[24]  Steven Kou,et al.  Option Pricing Under a Double Exponential Jump Diffusion Model , 2001, Manag. Sci..

[25]  B. Swart,et al.  Quantitative Finance , 2006, Metals and Energy Finance.

[26]  B. Bouchard,et al.  Discrete time approximation of decoupled Forward-Backward SDE with jumps , 2008 .

[27]  Francis A. Longstaff,et al.  Valuing American Options by Simulation: A Simple Least-Squares Approach , 2001 .

[28]  Steven Kou,et al.  Option Pricing Under a Mixed-Exponential Jump Diffusion Model , 2011, Manag. Sci..

[29]  L. Rogers Monte Carlo valuation of American options , 2002 .

[30]  Enlu Zhou,et al.  Information Relaxation and Dual Formulation of Controlled Markov Diffusions , 2013, IEEE Transactions on Automatic Control.

[31]  Denis Belomestny,et al.  Multilevel dual approach for pricing American style derivatives , 2012, Finance Stochastics.

[32]  Enlu Zhou,et al.  Optimal Stopping of Partially Observable Markov Processes: A Filtering-Based Duality Approach , 2013, IEEE Transactions on Automatic Control.

[33]  H. Pham Optimal stopping, free boundary, and American option in a jump-diffusion model , 1997 .

[34]  James A. Tilley Valuing American Options in a Path Simulation Model , 2002 .

[35]  Vivek F. Farias,et al.  Pathwise Optimization for Optimal Stopping Problems , 2012, Manag. Sci..

[36]  Cornelis W. Oosterlee,et al.  Pricing early-exercise and discrete barrier options by fourier-cosine series expansions , 2009, Numerische Mathematik.

[37]  Christian Bender,et al.  Dual pricing of multi-exercise options under volume constraints , 2011, Finance Stochastics.

[38]  R. Cont,et al.  Financial Modelling with Jump Processes , 2003 .