Enantiomerically pure alleno-acetylenic macrocycles: synthesis, solid-state structures, chiroptical properties, and electron localization function analysis.

New enantiomerically pure alleno-acetylenic macrocycles were prepared by oxidative homocoupling of optically active 1,3-diethynylallenes. Enantiomer separation resulted from a combined strategy of synthesis and chiral HPLC techniques. Two other achiral stereoisomers were also isolated and fully characterized. In addition, the X-ray structures of the chiral D(4)- and C(2)-symmetric macrocycles are reported. The chiroptical properties of these macrocycles are discussed on the basis of quantum chemical calculations, by using the CAM-B3LYP functional. Studies were carried out to investigate the vibronic fine structure observed experimentally in the UV/Vis and CD spectra. The origin of the intense chiroptical response of the chiral alleno-acetylenic macrocycles is explained by considering the topology of the molecular orbitals involved, thus relating electronic properties to structural features. Further analysis of the canonical molecular orbitals and the electron localization function (ELF) shows that these macrocycles belong to a relatively rare class of highly stable and formally anti-aromatic Hückel compounds.

[1]  Pablo Rivera-Fuentes,et al.  Amplifikation der Chiralität in monodispersen, enantiomerenreinen Allen‐Acetylen‐Oligomeren , 2010 .

[2]  Ana G. Petrovic,et al.  Amplification of chirality in monodisperse, enantiopure alleno-acetylenic oligomers. , 2010, Angewandte Chemie.

[3]  François Diederich,et al.  All‐Carbon Scaffolds by Rational Design , 2010, Advanced materials.

[4]  P. Limacher,et al.  Structural features analysis and nonlinearity of end-cap-substituted polyacetylenes. , 2010, The journal of physical chemistry. A.

[5]  Louise N. Dawe,et al.  Acetylenic phenyldithiafulvene: a versatile synthon for TTFV-based macromolecules. , 2010, Organic letters.

[6]  S. De Feyter,et al.  Large all-hydrocarbon spoked wheels of high symmetry: modular synthesis, photophysical properties, and surface assembly. , 2010, Journal of the American Chemical Society.

[7]  Zexing Cao,et al.  Electronic spectra of the linear polyyne cations HC(2n)H(+) (n=2-8): An ab initio study. , 2009, The Journal of chemical physics.

[8]  Carlo Adamo,et al.  Extensive TD-DFT Benchmark: Singlet-Excited States of Organic Molecules. , 2009, Journal of chemical theory and computation.

[9]  Masafumi Yoshio,et al.  A columnar liquid-crystalline shape-persistent macrocycle having a nanosegregated structure. , 2009, Organic & biomolecular chemistry.

[10]  Henry S Rzepa,et al.  The geometry and electronic topology of higher-order charged Möbius annulenes. , 2009, The journal of physical chemistry. A.

[11]  H. Rzepa The chiro-optical properties of a lemniscular octaphyrin. , 2009, Organic letters.

[12]  Pablo Rivera-Fuentes,et al.  Ein enantiomerenreiner alleno‐acetylenischer Makrocyclus: Synthese und Interpretation seiner herausragenden chiroptischen Eigenschaften , 2009 .

[13]  F. Diederich,et al.  An enantiomerically pure alleno-acetylenic macrocycle: synthesis and rationalization of its outstanding chiroptical response. , 2009, Angewandte Chemie.

[14]  A. Navarro‐Vázquez,et al.  Chiral (2,5)pyrido[7(4)]allenoacetylenic cyclophanes: synthesis and characterization. , 2009, Chemistry.

[15]  P. Schleyer,et al.  4n pi electrons but stable: N,N-dihydrodiazapentacenes. , 2009, The Journal of organic chemistry.

[16]  Hans Peter Lüthi,et al.  On the accurate calculation of polarizabilities and second hyperpolarizabilities of polyacetylene oligomer chains using the CAM-B3LYP density functional. , 2009, The Journal of chemical physics.

[17]  K. Rissanen,et al.  Halogen bonding drives the self-assembly of piperazine cyclophanes into tubular structures. , 2009, Chemical communications.

[18]  M. Surin,et al.  Two-dimensional oligo(phenylene-ethynylene-butadiynylene)s: all-covalent nanoscale spoked wheels. , 2009, Chemistry.

[19]  Henry S Rzepa,et al.  Wormholes in chemical space connecting torus knot and torus link pi-electron density topologies. , 2009, Physical chemistry chemical physics : PCCP.

[20]  A. Schlüter,et al.  Zweidimensionale Polymere: nur ein Traum von Synthetikern? , 2009 .

[21]  J. Sakamoto,et al.  Two-dimensional polymers: just a dream of synthetic chemists? , 2009, Angewandte Chemie.

[22]  F. Diederich,et al.  1,3-Diethynylallenes (DEAs): enantioselective synthesis, absolute configuration, and chiral induction in 1,1,4,4-tetracyanobuta-1,3-dienes (TCBDs). , 2008, Chemistry.

[23]  H. Rzepa,et al.  Chiral Aromaticities. A Topological Exploration of Möbius Homoaromaticity. , 2008, Journal of chemical theory and computation.

[24]  Alexander I Boldyrev,et al.  Developing paradigms of chemical bonding: adaptive natural density partitioning. , 2008, Physical chemistry chemical physics : PCCP.

[25]  H. Rzepa,et al.  Chiral aromaticities. AIM and ELF critical point and NICS magnetic analyses of Mobius-type aromaticity and homoaromaticity in lemniscular annulenes and hexaphyrins. , 2008, The Journal of organic chemistry.

[26]  J. Heully,et al.  Carbo-[3]oxocarbon and its isomers: evaluation of the stability and of the electron delocalization. , 2008, Physical chemistry chemical physics : PCCP.

[27]  H. Rzepa,et al.  Intrinsically chiral aromaticity. Rules incorporating linking number, twist, and writhe for higher-twist Möbius annulenes. , 2008, Journal of the American Chemical Society.

[28]  K. Noguchi,et al.  A Bidirectional Tunnel-like Structure with a Rigid, Thick, and Chiral Aromatic Macrocycle Prepared by Self-complementary 6,6'-Substituted Binaphthyl Monomer , 2008 .

[29]  P. Schleyer,et al.  Are N,N-dihydrodiazatetracene derivatives antiaromatic? , 2008, Journal of the American Chemical Society.

[30]  P. Fowler,et al.  Aromaticity of ring carbo-mers of [N]annulenes and [N]cycloalkanes. , 2008, Physical chemistry chemical physics : PCCP.

[31]  H. Akashi,et al.  Enantiopure anthrylene-ethynylene cyclic tetramer and racemization via rotation of anthracene unit about acetylenic axes. , 2008, Organic letters.

[32]  Mathieu Leclère,et al.  Asymmetric allenophanes: synthesis of a tris-meta-allenophane and tetrakis-meta-allenophane by sequential cross-coupling. , 2008, Angewandte Chemie.

[33]  K. Houk,et al.  Modern Computational and Theoretical Aspects of Acetylene Chemistry , 2007 .

[34]  Paweł Sałek,et al.  Structural and electronic properties of polyacetylene and polyyne from hybrid and Coulomb-attenuated density functionals. , 2007, The journal of physical chemistry. A.

[35]  R. Chauvin,et al.  Functional [6]pericyclynes: aromatization to substituted carbo-benzenes. , 2007, Chemistry.

[36]  V. Barone,et al.  Effective method to compute Franck-Condon integrals for optical spectra of large molecules in solution. , 2007, The Journal of chemical physics.

[37]  P. Schleyer,et al.  A thiadiazole-fused N,N-dihydroquinoxaline: antiaromatic but isolable. , 2007, Organic letters.

[38]  R. Chauvin,et al.  From macrocyclic oligo-acetylenes to aromatic ring carbo-mers. , 2006, Chemical reviews.

[39]  T. Goodson,et al.  Building symmetric two-dimensional two-photon materials. , 2006, Journal of the American Chemical Society.

[40]  F. Diederich,et al.  Two-dimensional acetylenic scaffolding: extended donor-substituted perethynylated dehydroannulenes. , 2006, Chemistry, an Asian journal.

[41]  Jeffrey S. Moore,et al.  Formtreue Makrocyclen: Strukturen und Synthesen aus Arylen‐ und Ethinylen‐Bausteinen , 2006 .

[42]  Jeffrey S. Moore,et al.  Shape-persistent macrocycles: structures and synthetic approaches from arylene and ethynylene building blocks. , 2006, Angewandte Chemie.

[43]  S. Höger,et al.  Cationic shape-persistent macrocycles: the unexpected formation of a nano-size supramolecular dimer. , 2006, Journal of the American Chemical Society.

[44]  R. Chauvin,et al.  Theoretical Studies on Acetylenic Scaffolds , 2005 .

[45]  M. Haley,et al.  Macrocycles Based on Phenylacetylene Scaffolding , 2005 .

[46]  Clémence Corminboeuf,et al.  Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. , 2005, Chemical reviews.

[47]  P. Seiler,et al.  Aufbau formstabiler chiraler alleno‐acetylenischer Makrocyclen und Cyclophane über Acetylenkupplungen mit 1,3‐Diethinylallenen , 2005 .

[48]  F. Diederich,et al.  Shape-persistent chiral alleno-acetylenic macrocycles and cyclophanes by acetylenic scaffolding with 1,3-diethynylallenes. , 2005, Angewandte Chemie.

[49]  A. G. Fallis,et al.  Acetylenic allenophanes: an asymmetric synthesis of a Bis(alleno)-bis(butadiynyl)-meta-cyclophane. , 2005, Angewandte Chemie.

[50]  Matthew D. Clay and,et al.  Acetylenic Allenophanes: An Asymmetric Synthesis of a Bis(alleno)-bis(butadiynyl)-meta-cyclophane† , 2005 .

[51]  N. Handy,et al.  A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP) , 2004 .

[52]  H. Köppel JAHN–TELLER AND PSEUDO-JAHN–TELLER INTERSECTIONS: SPECTROSCOPY AND VIBRONIC DYNAMICS , 2004 .

[53]  T. Kawase,et al.  Onion-type complexation based on carbon nanorings and a buckminsterfullerene. , 2004, Angewandte Chemie.

[54]  P. Fuentealba,et al.  Sigma-pi separation of the electron localization function and aromaticity. , 2004, The Journal of chemical physics.

[55]  F. D. De Schryver,et al.  Shape-persistent macrocycles with intraannular polar groups: synthesis, liquid crystallinity, and 2D organization. , 2004, Journal of the American Chemical Society.

[56]  Y. Yamaguchi,et al.  Shape-persistency and molecular function in heteromacrocycles: creation of heteroarenecyclynes and arene-azaarenecyclynes. , 2003, Chemistry.

[57]  M. Yamaguchi,et al.  [3+3]Cycloalkyne oligomers: linking groups control intra- and intermolecular aggregation by pi-pi interactions. , 2003, Angewandte Chemie.

[58]  F. Diederich,et al.  Aromaticity and electron affinity of Carbo(k)-[3]radialenes, k=0, 1, 2. , 2003, Chemistry.

[59]  U. Bunz New carbon-rich organometallic architectures based on cyclobutadienecyclopentadienylcobalt and ferrocene modules , 2003 .

[60]  Takao Someya,et al.  Synthesis, assembly, and thin film transistors of dihydrodiazapentacene: an isostructural motif for pentacene. , 2003, Journal of the American Chemical Society.

[61]  Stefan Grimme,et al.  Substantial errors from time-dependent density functional theory for the calculation of excited states of large pi systems. , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.

[62]  F. Diederich,et al.  Expanded cubane: synthesis of a cage compound with a C56 core by acetylenic scaffolding and gas-phase transformations into fullerenes. , 2002, Angewandte Chemie.

[63]  F. Diederich,et al.  Pi-electron conjugation effects in antiaromatic dehydro[12]- and aromatic dehydro[18]-annulenes. , 2002, Chemical communications.

[64]  Karina Sendt,et al.  Failure of density-functional theory and time-dependent density-functional theory for large extended π systems , 2002 .

[65]  A. Schlüter,et al.  Shape‐Persistent, Nano‐Sized Macrocycles , 2002 .

[66]  S. Höger,et al.  Solvent triggering between conformational states in amphiphilic shape-persistent macrocycles. , 2002, Journal of the American Chemical Society.

[67]  Keiji Hirose,et al.  m-Diethynylbenzene macrocycles: syntheses and self-association behavior in solution. , 2002, Journal of the American Chemical Society.

[68]  A. Orita,et al.  Enantiopure double-helical alkynyl cyclophanes. , 2002, Angewandte Chemie.

[69]  G. Rayfield,et al.  Nonlinear optical properties of dehydrobenzo[18]annulenes: expanded two-dimensional dipolar and octupolar NLO chromophores , 2001 .

[70]  T. Kawase,et al.  8,16,24,32,40,48-Hexamethoxy[2.6]metacyclophane-1,9,17,25,33,41-hexayne: a novel near-planar ammonium-selective ionophore. , 2001, Chemical communications.

[71]  D. Gin,et al.  Nanoporous Catalytic Materials with Organic Frameworks , 2001 .

[72]  P. Günter,et al.  Highly functionalized dimeric tetraethynylethenes and expanded radialenes: strong evidence for macrocyclic cross-conjugation. , 2001, Chemistry.

[73]  M. Möller,et al.  Synthesis, aggregation, and adsorption phenomena of shape-persistent macrocycles with extraannular polyalkyl substituents. , 2001, Journal of the American Chemical Society.

[74]  Sigurd Höger,et al.  Alkylsubstituierte formtreue Makrocyclen: der erste discotische Flüssigkristall mit starrer Peripherie und flexiblem Kern , 2000 .

[75]  H. Rzepa,et al.  Möbius and Hückel molecular orbitals arising from CCC components in annulene rings , 2000 .

[76]  H. Rzepa,et al.  Möbius aromatics arising from a CCC ring component , 2000 .

[77]  F. Vögtle,et al.  Synthesis of the First [34]Allenophane: 1,3,10,12,19,21,28,30‐Octamethyl[3.3.3.3]paracyclophan‐1,2,10,11,19,20,28,29‐octaene , 1999 .

[78]  Synthese des ersten [34]Allenophans: 1,3,10,12,19,21,28,30-Octamethyl[3.3.3.3]paracyclophan-1,2,10,11,19,20,28,29-octaen , 1999 .

[79]  F. Diederich,et al.  CYCLIC AND LINEAR ACETYLENIC MOLECULAR SCAFFOLDING , 1999 .

[80]  Maria Cristina Burla,et al.  SIR97: a new tool for crystal structure determination and refinement , 1999 .

[81]  L. Pu,et al.  A dipole oriented chiral conjugated polymer and multipolar chiral macrocycles , 1998 .

[82]  Y. Tobe,et al.  Synthesis and Association Behavior of [4.4.4.4.4.4]Metacyclophanedodecayne Derivatives with Interior Binding Groups. , 1998, Angewandte Chemie.

[83]  Rik R. Tykwinski,et al.  Structure−Property Relationships in Third-Order Nonlinear Optical Chromophores , 1998 .

[84]  Naoto Utsumi,et al.  Synthese und Assoziationsverhalten von [4.4.4.4.4.4]Metacyclophandodecain‐Derivaten mit Bindungsstellen innerhalb des Makrocyclus , 1998 .

[85]  T. Kawamura,et al.  Synthesis, Structure, and Redox Behavior of the Dehydroannulenes Fused with Bicyclo[2.2.2]octene Frameworks , 1997 .

[86]  F. Diederich,et al.  Tetraethynylethene molecular scaffolding: Nonlinear optical, redox, and amphiphilic properties of donor functionalized polytriacetylene and expanded radialenes , 1997 .

[87]  Paul von Ragué Schleyer,et al.  Nucleus-Independent Chemical Shifts:  A Simple and Efficient Aromaticity Probe. , 1996, Journal of the American Chemical Society.

[88]  Ashok S. Shetty,et al.  Aromatic π-Stacking in Solution as Revealed through the Aggregation of Phenylacetylene Macrocycles , 1996 .

[89]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[90]  S. Höger,et al.  Shape-persistent macrocyclic amphiphiles: molecular reversible coats , 1996 .

[91]  F. Diederich,et al.  A New Family of Chiral Binaphthyl‐Derived Cyclophane Receptors: Complexation of Pyranosides , 1995 .

[92]  S. Anderson,et al.  Eine neue Klasse chiraler, von 1,1′‐Binaphthyl abgeleiteter Cyclophan‐Rezeptoren: Komplexierung von Pyranosiden , 1995 .

[93]  A. Savin,et al.  Classification of chemical bonds based on topological analysis of electron localization functions , 1994, Nature.

[94]  Jeffrey S. Moore,et al.  An organic solid with wide channels based on hydrogen bonding between macrocycles , 1994, Nature.

[95]  Jeffrey S. Moore,et al.  LIQUID CRYSTALS BASED ON SHAPE-PERSISTENT MACROCYCLIC MESOGENS , 1994 .

[96]  John E. Anthony,et al.  Stabile, von Tetraethinylethen abgeleitete [12]- und [18]Annulene† , 1993 .

[97]  F. Diederich,et al.  Stable [12]‐ and [18]Annulenes Derived from Tetraethynylethene , 1993 .

[98]  G. Wilke Beiträge zur nickelorganischen Chemie , 1988 .

[99]  G. Wilke Contributions to Organo‐Nickel Chemistry , 1988 .

[100]  R. Rossi,et al.  A palladium-promoted route to 3-alkyl-4-(1-alkynyl)hexa-1,5-dyn-3-enes and/or 1,3-diynes , 1985 .