OPTIMAL FEATURE DESIGN FOR VISION-GUIDED MANIPULATION

Optimal Feature Design for Vision-Guided Manipulation Azad Shademan, Master of Applied Science in Electrical and Computer Engineering Department, Ryerson U niversity, 2005 Numerous industrial applications use vision-guided manip ulation, where cameras are used to generate the feedback control signal. Current vision algor ithms select a set of image features to estimate pose in real-time. Object design has received litt le a ention in this context; more importantly, improper designs could lead to task failure. The foc us of this thesis is on optimal industrial design of features. The goal is to construct the theory of opt imal design for vision-guided manipulation. The problem is posed as a multi-objective optimizat ion problem within an axiomatic-design theoretic framework. The visual and directional motion res olvability objectives are specified for a given 6-dimensional camera trajectory. Simulation result s verify that the redesigned object satisfies the objectives. The practical implementation is attempted by camera calibration, pose estimation, and experiments on a real industrial object under a known cam er trajectory.

[1]  Olivier Faugeras,et al.  Three D-Dynamic Scene Analysis: A Stereo Based Approach , 1992 .

[2]  Pradeep K. Khosla,et al.  Vision resolvability for visually servoed manipulation , 1996, J. Field Robotics.

[3]  William J. Wilson,et al.  Relative end-effector control using Cartesian position based visual servoing , 1996, IEEE Trans. Robotics Autom..

[4]  Yong Yu,et al.  An information theoretical approach to view planning with kinematic and geometric constraints , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[5]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.

[6]  Tony Owen Assembly Automation And Product Design by Geoffrey Boothroyd Marcel Dekker, Inc., New York, 199, 413 pages including index ($114.50 or ca. £65.00) , 1992, Robotica.

[7]  Pradeep K. Khosla,et al.  Force and vision resolvability for assimilating disparate sensory feedback , 1996, IEEE Trans. Robotics Autom..

[8]  Nam P. Suh,et al.  principles in design , 1990 .

[9]  J. L. Roux An Introduction to the Kalman Filter , 2003 .

[10]  R. Fletcher Practical Methods of Optimization , 1988 .

[11]  Koichi Hashimoto,et al.  Visual Servoing: Real-Time Control of Robot Manipulators Based on Visual Sensory Feedback , 1993 .

[12]  Vítor Sequeira,et al.  3D reality modelling: photo-realistic 3D models of real world scenes , 2002, Proceedings. First International Symposium on 3D Data Processing Visualization and Transmission.

[13]  Peter Corke,et al.  Visual Control of Robots: High-Performance Visual Servoing , 1996 .

[14]  Brian Birge,et al.  PSOt - a particle swarm optimization toolbox for use with Matlab , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[15]  G. Roth,et al.  View planning for automated three-dimensional object reconstruction and inspection , 2003, CSUR.

[16]  Konstantinos A. Tarabanis,et al.  The MVP sensor planning system for robotic vision tasks , 1995, IEEE Trans. Robotics Autom..

[17]  Lee E. Weiss,et al.  Dynamic sensor-based control of robots with visual feedback , 1987, IEEE Journal on Robotics and Automation.

[18]  C. S. George Lee,et al.  Weighted selection of image features for resolved rate visual feedback control , 1991, IEEE Trans. Robotics Autom..

[19]  Janne Heikkilä,et al.  A four-step camera calibration procedure with implicit image correction , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[20]  Pradeep K. Khosla,et al.  Dexterity measures for design and control of manipulators , 1991, Proceedings IROS '91:IEEE/RSJ International Workshop on Intelligent Robots and Systems '91.

[21]  M. Isabel Ribeiro,et al.  Active view selection for efficient 3D scene reconstruction , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[22]  Farrokh Janabi-Sharifi,et al.  Using scale-invariant feature points in visual servoing , 2004, SPIE Optics East.

[23]  Patrick Rives,et al.  Singularities in the determination of the situation of a robot effector from the perspective view of 3 points , 1993 .

[24]  Jean-Yves Bouguet,et al.  Camera calibration toolbox for matlab , 2001 .

[25]  Vítor Sequeira,et al.  View planning for the 3D modelling of real world scenes , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[26]  Rajeev Sharma,et al.  Motion perceptibility and its application to active vision-based servo control , 1997, IEEE Trans. Robotics Autom..

[27]  Maurizio Ficocelli,et al.  Adaptive filtering for pose estimation in visual servoing , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[28]  Jasbir S. Arora,et al.  Survey of multi-objective optimization methods for engineering , 2004 .

[29]  G. R. Walsh,et al.  Methods Of Optimization , 1976 .

[30]  C Tomasi,et al.  Shape and motion from image streams: a factorization method. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Carlo Tomasi,et al.  Good features to track , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[32]  Konstantinos A. Tarabanis,et al.  Computing viewpoints that satisfy optical constraints , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[33]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[34]  P. Wang Optimal Path Planning Based on Visibility , 2003 .

[35]  W. J. Wilson,et al.  Comparison of image-based and position-based robot visual servoing methods and improvements , 2004 .

[36]  Gregory D. Hager,et al.  Fast and Globally Convergent Pose Estimation from Video Images , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[37]  David Puig,et al.  Acquisition, modelling and rendering of very large urban environments , 2004 .

[38]  Allen R. Hanson,et al.  Robust methods for estimating pose and a sensitivity analysis , 1994 .

[39]  Xinhua Zhuang,et al.  Pose estimation from corresponding point data , 1989, IEEE Trans. Syst. Man Cybern..

[40]  Zhengyou Zhang,et al.  A Flexible New Technique for Camera Calibration , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[41]  Konstantinos A. Tarabanis,et al.  A survey of sensor planning in computer vision , 1995, IEEE Trans. Robotics Autom..

[42]  Jami J. Shah,et al.  Parametric and Feature-Based CAD/CAM: Concepts, Techniques, and Applications , 1995 .

[43]  William J. Wilson,et al.  Automatic selection of image features for visual servoing , 1997, IEEE Trans. Robotics Autom..

[44]  Herman Bruyninckx,et al.  Kalman filters for non-linear systems: a comparison of performance , 2004 .

[45]  Paulo Dias,et al.  Combining intensity and range images for 3D modelling , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[46]  Peter Kovesi,et al.  Automatic Sensor Placement from Vision Task Requirements , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[47]  Zhengyou Zhang,et al.  Flexible camera calibration by viewing a plane from unknown orientations , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[48]  Nikolaos Papanikolopoulos,et al.  Six degree-of-freedom hand/eye visual tracking with uncertain parameters , 1995, IEEE Trans. Robotics Autom..

[49]  Yaakov Bar-Shalom,et al.  Estimation and Tracking: Principles, Techniques, and Software , 1993 .

[50]  Yiming Ye,et al.  Sensor Planning for 3D Object Search , 1999 .

[51]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[52]  Farrokh Janabi-Sharifi,et al.  Visual Servoing: Theory and Applications , 2002 .

[53]  Gregory D. Hager,et al.  Robust Image Processing and PositionBased Visual Servoing , 2000 .

[54]  Gregory D. Hager,et al.  Robust Vision for Vision-Based Control of Motion , 1999 .

[55]  Leon Zlajpah DEXTERITY MEASURES FOR OPTIMAL PATH CONTROL OF REDUNDANT MANIPULATORS , 1996 .

[56]  G. Boothroyd,et al.  Assembly Automation and Product Design , 1991 .

[57]  Farrokh Janabi-Sharifi,et al.  Feature design for optimum directional motion resolvability , 2005, International Symposium on Optomechatronic Technologies.

[58]  Maurizio Ficocelli,et al.  Formulation of radiometric feasibility measures for feature selection and planning in visual servoing , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[59]  Roger Y. Tsai,et al.  A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses , 1987, IEEE J. Robotics Autom..

[60]  Frank P. Ferrie,et al.  The Skeptical Explorer: A Multiple-Hypothesis Approach to Visual Modeling and Exploration , 2000, Auton. Robots.

[61]  Peter I. Corke,et al.  A tutorial on visual servo control , 1996, IEEE Trans. Robotics Autom..

[62]  Patrick Rives,et al.  A new approach to visual servoing in robotics , 1992, IEEE Trans. Robotics Autom..

[63]  A. Shademan,et al.  Sensitivity analysis of EKF and iterated EKF pose estimation for position-based visual servoing , 2005, Proceedings of 2005 IEEE Conference on Control Applications, 2005. CCA 2005..

[64]  P. Khosla,et al.  The Resolvability Ellipsoid for Sensor Based Manipulation , 1993 .