Improved current extraction from ZnO/PbS quantum dot heterojunction photovoltaics using a MoO3 interfacial layer.

The ability to engineer interfacial energy offsets in photovoltaic devices is one of the keys to their optimization. Here, we demonstrate that improvements in power conversion efficiency may be attained for ZnO/PbS heterojunction quantum dot photovoltaics through the incorporation of a MoO(3) interlayer between the PbS colloidal quantum dot film and the top-contact anode. Through a combination of current-voltage characterization, circuit modeling, Mott-Schottky analysis, and external quantum efficiency measurements performed with bottom- and top-illumination, these enhancements are shown to stem from the elimination of a reverse-bias Schottky diode present at the PbS/anode interface. The incorporation of the high-work-function MoO(3) layer pins the Fermi level of the top contact, effectively decoupling the device performance from the work function of the anode and resulting in a high open-circuit voltage (0.59 ± 0.01 V) for a range of different anode materials. Corresponding increases in short-circuit current and fill factor enable 1.5-fold, 2.3-fold, and 4.5-fold enhancements in photovoltaic device efficiency for gold, silver, and ITO anodes, respectively, and result in a power conversion efficiency of 3.5 ± 0.4% for a device employing a gold anode.

[1]  Xiong Gong,et al.  Efficient, Air‐Stable Bulk Heterojunction Polymer Solar Cells Using MoOx as the Anode Interfacial Layer , 2011, Advanced materials.

[2]  Jianbo Gao,et al.  Quantum dot size dependent J-V characteristics in heterojunction ZnO/PbS quantum dot solar cells. , 2011, Nano letters.

[3]  Jiang Tang,et al.  Infrared Colloidal Quantum Dots for Photovoltaics: Fundamentals and Recent Progress , 2011, Advanced materials.

[4]  M. Loi,et al.  PbS nanocrystal solar cells with high efficiency and fill factor , 2010 .

[5]  C. Tang,et al.  CdS/CdTe solar cells with MoOx as back contact buffers , 2010 .

[6]  Illan J. Kramer,et al.  Dead zones in colloidal quantum dot photovoltaics: evidence and implications. , 2010, Optics express.

[7]  Jianbo Gao,et al.  Stability Assessment on a 3% Bilayer PbS/ZnO Quantum Dot Heterojunction Solar Cell , 2010, Advanced materials.

[8]  Guangmei Zhai,et al.  High efficiency mesoporous titanium oxide PbS quantum dot solar cells at low temperature , 2010 .

[9]  Edward H. Sargent,et al.  Depleted-heterojunction colloidal quantum dot photovoltaics employing low-cost electrical contacts , 2010 .

[10]  V. Bulović,et al.  Colloidal PbS quantum dot solar cells with high fill factor. , 2010, ACS nano.

[11]  Do-Young Kim,et al.  Energy level evolution of air and oxygen exposed molybdenum trioxide films , 2010 .

[12]  Ye Tao,et al.  Self-organized phase segregation between inorganic nanocrystals and PC61BM for hybrid high-efficiency bulk heterojunction photovoltaic cells , 2010 .

[13]  Ratan Debnath,et al.  Depleted-heterojunction colloidal quantum dot solar cells. , 2010, ACS nano.

[14]  Alan J. Heeger,et al.  Enhanced diode characteristics of organic solar cells using titanium suboxide electron transport layer , 2010 .

[15]  Lukasz Brzozowski,et al.  Ambient-processed colloidal quantum dot solar cells via individual pre-encapsulation of nanoparticles. , 2010, Journal of the American Chemical Society.

[16]  Eminet Gebremichael,et al.  p-Type PbSe and PbS quantum dot solids prepared with short-chain acids and diacids. , 2010, ACS nano.

[17]  A. Kahn,et al.  Effect of contamination on the electronic structure and hole-injection properties of MoO3/organic semiconductor interfaces , 2010 .

[18]  Jiang Tang,et al.  Schottky Quantum Dot Solar Cells Stable in Air under Solar Illumination , 2010, Advanced materials.

[19]  Lukasz Brzozowski,et al.  Quantum dot photovoltaics in the extreme quantum confinement regime: the surface-chemical origins of exceptional air- and light-stability. , 2010, ACS nano.

[20]  S. Forrest,et al.  Analysis of metal-oxide-based charge generation layers used in stacked organic light-emitting diodes , 2010 .

[21]  R. Hatton,et al.  Increased efficiency of small molecule photovoltaic cells by insertion of a MoO3 hole-extracting layer , 2010 .

[22]  S. Tsang,et al.  Highly efficient cross-linked PbS nanocrystal/C60 hybrid heterojunction photovoltaic cell , 2009, 2010 3rd International Nanoelectronics Conference (INEC).

[23]  E. Aydil,et al.  Solar cells based on junctions between colloidal PbSe nanocrystals and thin ZnO films. , 2009, ACS nano.

[24]  Wolfgang Kowalsky,et al.  Role of the deep-lying electronic states of MoO3 in the enhancement of hole-injection in organic thin films , 2009 .

[25]  S. Haque,et al.  PbS and CdS Quantum Dot‐Sensitized Solid‐State Solar Cells: “Old Concepts, New Results” , 2009 .

[26]  Byung-Ryool Hyun,et al.  PbSe nanocrystal excitonic solar cells. , 2009, Nano letters.

[27]  Do-Young Kim,et al.  The effect of molybdenum oxide interlayer on organic photovoltaic cells , 2009, Organic Photonics + Electronics.

[28]  A Paul Alivisatos,et al.  Materials availability expands the opportunity for large-scale photovoltaics deployment. , 2009, Environmental science & technology.

[29]  Moungi G Bawendi,et al.  Heterojunction photovoltaics using printed colloidal quantum dots as a photosensitive layer. , 2009, Nano letters.

[30]  Stephen R. Forrest,et al.  Open circuit voltage enhancement due to reduced dark current in small molecule photovoltaic cells , 2009 .

[31]  Xindong Zhang,et al.  Performance improvement of inverted polymer solar cells with different top electrodes by introducing a MoO3 buffer layer , 2008 .

[32]  Byung-Ryool Hyun,et al.  Electron injection from colloidal PbS quantum dots into titanium dioxide nanoparticles. , 2008, ACS nano.

[33]  Matt Law,et al.  Schottky solar cells based on colloidal nanocrystal films. , 2008, Nano letters.

[34]  Edward H. Sargent,et al.  Schottky-quantum dot photovoltaics for efficient infrared power conversion , 2008 .

[35]  Anusorn Kongkanand,et al.  Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture. , 2008, Journal of the American Chemical Society.

[36]  Yoshiki Kinoshita,et al.  Formation of Ohmic hole injection by inserting an ultrathin layer of molybdenum trioxide between indium tin oxide and organic hole-transporting layers , 2007 .

[37]  J. Sites,et al.  Hole current impedance and electron current enhancement by back-contact barriers in CdTe thin film solar cells , 2006 .

[38]  Jef Poortmans,et al.  Thin Film Solar Cells: Fabrication, Characterization and Applications , 2006 .

[39]  Vishal Shrotriya,et al.  Transition metal oxides as the buffer layer for polymer photovoltaic cells , 2006 .

[40]  G. Konstantatos,et al.  Solution-processed PbS quantum dot infrared photodetectors and photovoltaics , 2005, Nature materials.

[41]  James Kirkpatrick,et al.  Factors limiting the efficiency of molecular photovoltaic devices , 2004 .

[42]  M. DeTeresaJ,et al.  (AA′) 2 FeReO 6 二重ペロブスカイトの磁気特性に対する陽イオンサイズの影響 | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 2004 .

[43]  F. Pfisterer,et al.  The wet-topotaxial process of junction formation and surface treatments of Cu2S–CdS thin-film solar cells , 2003 .

[44]  D. Milliron,et al.  Surface oxidation activates indium tin oxide for hole injection , 2000 .

[45]  B. Hsieh,et al.  Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy , 1996 .

[46]  H. Michaelson The work function of the elements and its periodicity , 1977 .