Thermal Annealing Effects on the Interfacial Dzyaloshinskii–Moriya Interaction Energy Density and Perpendicular Magnetic Anisotropy

We investigate the interfacial Dzyaloshinskii–Moriya interaction (iDMI) and the perpendicular magnetic anisotropy (PMA) in the annealed inversion symmetry breaking structures (Pt/Co (CoFeB)/AlOx and Ta/CoFeB/AlOx) by Brillouin light scattering. The iDMI energy density of Pt/Co and Pt/CoFeB samples decreases while increasing annealing temperature, but the iDMI energy density of Ta/CoFeB sample slightly increases by increasing annealing temperature. By applying the thermal annealing process, PMA energies slightly increase at the Pt/Co interface; however, Pt/CoFeB, (Ta/CoFeB) structures are dramatically decreased (increased) by the annealing process. The effects of the annealing show complicate variation for iDMI and PMA for each structure; however, we find overall weak correlations between iDMI and PMA despite different materials and annealing process.

[1]  C. Marrows,et al.  Measuring and tailoring the Dzyaloshinskii-Moriya interaction in perpendicularly magnetized thin films , 2014 .

[2]  C. Marrows,et al.  Effect of annealing on the interfacial Dzyaloshinskii-Moriya interaction in Ta/CoFeB/MgO trilayers , 2016, 1607.06405.

[3]  H. Ohno,et al.  A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction. , 2010, Nature materials.

[4]  T. Silva,et al.  Linear relation between Heisenberg exchange and interfacial Dzyaloshinskii–Moriya interaction in metal films , 2015, Nature Physics.

[5]  U. Rößler,et al.  Chiral skyrmions in thin magnetic films: new objects for magnetic storage technologies? , 2011, 1102.2726.

[6]  A. N’Diaye,et al.  Tailoring the chirality of magnetic domain walls by interface engineering , 2013, Nature Communications.

[7]  Hans Fangohr,et al.  Skyrmion-skyrmion and skyrmion-edge repulsions in skyrmion-based racetrack memory , 2014, Scientific Reports.

[8]  A. Fert,et al.  Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. , 2013, Nature nanotechnology.

[9]  C. You,et al.  Interfacial Dzyaloshinskii-Moriya interaction, surface anisotropy energy, and spin pumping at spin orbit coupled Ir/Co interface , 2016, 1601.02210.

[10]  B. Hillebrands,et al.  Brillouin light scattering from spin waves in magnetic layers and multilayers , 1989 .

[11]  S. Eguchi,et al.  Transmission electron microscopy study on the crystallization and boron distribution of CoFeB/MgO/CoFeB magnetic tunnel junctions with various capping layers , 2009 .

[12]  Hjm Henk Swagten,et al.  Asymmetric Hysteresis for Probing Dzyaloshinskii-Moriya Interaction. , 2016, Nano letters.

[13]  C. You,et al.  Thickness dependence of the interfacial Dzyaloshinskii–Moriya interaction in inversion symmetry broken systems , 2015, Nature Communications.

[14]  Kyung-Jin Lee,et al.  Asymmetric magnetic domain-wall motion by the Dzyaloshinskii-Moriya interaction , 2013, 1307.0984.

[15]  B. Diény,et al.  First-principles investigation of the very large perpendicular magnetic anisotropy at Fe|MgO and Co|MgO interfaces , 2010, 1011.5667.

[16]  Dezheng Yang,et al.  Enhancement of spin-orbit torques in Ta/Co20Fe60B20/MgO structures induced by annealing , 2017 .

[17]  Shoji Ikeda,et al.  Dependence of Giant Tunnel Magnetoresistance of Sputtered CoFeB/MgO/CoFeB Magnetic Tunnel Junctions on MgO Barrier Thickness and Annealing Temperature , 2005 .

[18]  Asymmetric spin-wave dispersion due to Dzyaloshinskii-Moriya interaction in an ultrathin Pt/CoFeB film , 2014, 1412.3907.

[19]  D. Steigerwald,et al.  Magnetic properties of sandwiches and superlattices of fcc Fe(001) grown on Cu(001) substrates , 1988 .

[20]  Yan Zhou,et al.  Voltage Controlled Magnetic Skyrmion Motion for Racetrack Memory , 2015, Scientific Reports.

[21]  J. Zhu,et al.  Energetic molding of chiral magnetic bubbles , 2016, 1604.02999.

[22]  C. You,et al.  Dependence of interfacial Dzyaloshinskii–Moriya interaction and perpendicular magnetic anisotropy on the thickness of the heavy-metal layer , 2017 .

[23]  C. You,et al.  Improvement of the interfacial Dzyaloshinskii-Moriya interaction by introducing a Ta buffer layer , 2015 .

[24]  B. Diény,et al.  Competition between CoOx and CoPt phases in Pt/Co/AlOx semi tunnel junctions , 2013 .

[25]  P. Bruno,et al.  Tight-binding approach to the orbital magnetic moment and magnetocrystalline anisotropy of transition-metal monolayers. , 1989, Physical review. B, Condensed matter.