Image analysis tools and emerging algorithms for expression proteomics

Since their origins in academic endeavours in the 1970s, computational analysis tools have matured into a number of established commercial packages that underpin research in expression proteomics. In this paper we describe the image analysis pipeline for the established 2‐DE technique of protein separation, and by first covering signal analysis for MS, we also explain the current image analysis workflow for the emerging high‐throughput ‘shotgun’ proteomics platform of LC coupled to MS (LC/MS). The bioinformatics challenges for both methods are illustrated and compared, whereas existing commercial and academic packages and their workflows are described from both a user's and a technical perspective. Attention is given to the importance of sound statistical treatment of the resultant quantifications in the search for differential expression. Despite wide availability of proteomics software, a number of challenges have yet to be overcome regarding algorithm accuracy, objectivity and automation, generally due to deterministic spot‐centric approaches that discard information early in the pipeline, propagating errors. We review recent advances in signal and image analysis algorithms in 2‐DE, MS, LC/MS and Imaging MS. Particular attention is given to wavelet techniques, automated image‐based alignment and differential analysis in 2‐DE, Bayesian peak mixture models, and functional mixed modelling in MS, and group‐wise consensus alignment methods for LC/MS.

[1]  Jeffrey S. Morris,et al.  Bayesian Mixture Models for Gene Expression and Protein Profiles , 2006 .

[2]  U. Köthe,et al.  Toward digital staining using imaging mass spectrometry and random forests. , 2009, Journal of proteome research.

[3]  Xing Liu,et al.  Protein image alignment via tensor product cubic splines , 2007, Optim. Methods Softw..

[4]  Ela Hunt,et al.  Visualisation and analysis of proteomic data from the procyclic form of Trypanosoma brucei , 2006, Proteomics.

[5]  Marco Grzegorczyk,et al.  Statistics for Proteomics: A Review of Tools for Analyzing Experimental Data , 2006, Proteomics.

[6]  J. Listgarten,et al.  Statistical and Computational Methods for Comparative Proteomic Profiling Using Liquid Chromatography-Tandem Mass Spectrometry , 2005, Molecular & Cellular Proteomics.

[7]  Jeffrey S. Morris,et al.  Analysis of Mass Spectrometry Data Using Bayesian Wavelet-Based Functional Mixed Models , 2006 .

[8]  Dimitris K. Iakovidis,et al.  A Genetic Approach to Spot Detection in Two-Dimensional Gel Electrophoresis Images , 2022 .

[9]  Benno Schwikowski,et al.  Alignment of LC‐MS images, with applications to biomarker discovery and protein identification , 2008, Proteomics.

[10]  Jeffrey S. Morris,et al.  Wavelet-based functional mixed model analysis: Computational considerations , 2006 .

[11]  Michelle L. Reyzer,et al.  MALDI imaging mass spectrometry: molecular snapshots of biochemical systems , 2007, Nature Methods.

[12]  Marcel J. T. Reinders,et al.  Analysis of mass spectrometry data using sub-spectra , 2009, BMC Bioinformatics.

[13]  Shyr Yu,et al.  A novel comprehensive wave-form MS data processing method , 2009, Bioinform..

[14]  M Daszykowski,et al.  Start-to-end processing of two-dimensional gel electrophoretic images. , 2007, Journal of chromatography. A.

[15]  Peng Zhang,et al.  Peak Tree: A New Tool for Multiscale Hierarchical Representation and Peak Detection of Mass Spectrometry Data , 2011, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[16]  Michael Unser,et al.  Elastic image registration of 2‐D gels for differential and repeatability studies , 2008, Proteomics.

[17]  Stefan Posch,et al.  Optimised coupling of hierarchies in image registration , 2008, Image Vis. Comput..

[18]  R. Abagyan,et al.  XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. , 2006, Analytical chemistry.

[19]  Radford M. Neal,et al.  Multiple Alignment of Continuous Time Series , 2004, NIPS.

[20]  Steffen Neumann,et al.  Critical assessment of alignment procedures for LC-MS proteomics and metabolomics measurements , 2008, BMC Bioinformatics.

[21]  J. Ostrowski,et al.  Two-Stage Model-Based Clustering for Liquid Chromatography Mass Spectrometry Data Analysis , 2009, Statistical applications in genetics and molecular biology.

[22]  Radford M. Neal,et al.  Bayesian Detection of Infrequent Differences in Sets of Time Series with Shared Structure , 2006, NIPS.

[23]  R. Wilson Modelling of 2D gel electrophoresis images for Proteomics databases , 2002, Object recognition supported by user interaction for service robots.

[24]  Karl J. Friston,et al.  Voxel-Based Morphometry—The Methods , 2000, NeuroImage.

[25]  Brittan N Clark,et al.  The myth of automated, high‐throughput two‐dimensional gel analysis , 2008, Proteomics.

[26]  M. Rudemo,et al.  Statistical exploration of variation in quantitative two‐dimensional gel electrophoresis data , 2004, Proteomics.

[27]  Fred A Hamprecht,et al.  Concise representation of mass spectrometry images by probabilistic latent semantic analysis. , 2008, Analytical chemistry.

[28]  Knut Reinert,et al.  LC-MSsim – a simulation software for liquid chromatography mass spectrometry data , 2008, BMC Bioinformatics.

[29]  T. Rejtar,et al.  Increased identification of peptides by enhanced data processing of high-resolution MALDI TOF/TOF mass spectra prior to database searching. , 2004, Analytical chemistry.

[30]  David K Han,et al.  PROTEOME-3D: An Interactive Bioinformatics Tool for Large-Scale Data Exploration and Knowledge Discovery* , 2003, Molecular & Cellular Proteomics.

[31]  T. Perneger What's wrong with Bonferroni adjustments , 1998, BMJ.

[32]  Sören-Oliver Deininger,et al.  MALDI imaging combined with hierarchical clustering as a new tool for the interpretation of complex human cancers. , 2008, Journal of proteome research.

[33]  Romesh Stanislaus,et al.  Normalization and analysis of residual variation in two‐dimensional gel electrophoresis for quantitative differential proteomics , 2005, Proteomics.

[34]  Lars Linsen,et al.  Visual analysis of gel-free proteome data , 2006, IEEE Transactions on Visualization and Computer Graphics.

[35]  C. Enke,et al.  Practical implications of some recent studies in electrospray ionization fundamentals. , 2001, Mass spectrometry reviews.

[36]  K. Egiazarian,et al.  Blind image deconvolution , 2007 .

[37]  R. Cooks,et al.  Orbitrap mass spectrometry: instrumentation, ion motion and applications. , 2008, Mass spectrometry reviews.

[38]  Patrizio Campisi,et al.  Blind image deconvolution , 2007 .

[39]  Jeffrey S. Morris,et al.  Evaluating the performance of new approaches to spot quantification and differential expression in 2-dimensional gel electrophoresis studies. , 2010, Journal of proteome research.

[40]  Age K. Smilde,et al.  Optimized time alignment algorithm for LC-MS data: correlation optimized warping using component detection algorithm-selected mass chromatograms. , 2008, Analytical chemistry.

[41]  Guang-Zhong Yang,et al.  The role of bioinformatics in two‐dimensional gel electrophoresis , 2003, Proteomics.

[42]  Tobias Rydén,et al.  Regression analysis and modelling of data acquisition for SELDI-TOF mass spectrometry , 2007, Bioinform..

[43]  B R Locke,et al.  When can the Ogston‐Morris‐Rodbard‐Chrambach model be applied to gel electrophoresis? , 1999, Electrophoresis.

[44]  I. Chernushevich,et al.  An introduction to quadrupole-time-of-flight mass spectrometry. , 2001, Journal of mass spectrometry : JMS.

[45]  Knut Reinert,et al.  High-Accuracy Peak Picking of Proteomics Data Using Wavelet Techniques , 2005, Pacific Symposium on Biocomputing.

[46]  Jacob D. Jaffe,et al.  MapQuant: Open‐source software for large‐scale protein quantification , 2006, Proteomics.

[47]  Kelly Handley Statistical analysis of proteomic mass spectrometry data , 2007 .

[48]  Xiaobo Zhou,et al.  Computational Systems Bioinformatics and Bioimaging for Pathway Analysis and Drug Screening , 2008, Proceedings of the IEEE.

[49]  T. Rejtar,et al.  A new algorithm using cross-assignment for label-free quantitation with LC-LTQ-FT MS. , 2007, Journal of proteome research.

[50]  E. Deutsch mzML: A single, unifying data format for mass spectrometer output , 2008, Proteomics.

[51]  Jim Graham,et al.  Robust and Accurate Registration of 2-D Electrophoresis Gels Using Point-Matching , 2007, IEEE Transactions on Image Processing.

[52]  Ruedi Aebersold,et al.  A Software Suite for the Generation and Comparison of Peptide Arrays from Sets of Data Collected by Liquid Chromatography-Mass Spectrometry*S , 2005, Molecular & Cellular Proteomics.

[53]  Daniel Rueckert,et al.  Consistent groupwise non-rigid registration for atlas construction , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[54]  François Chevenet,et al.  The pitfalls of proteomics experiments without the correct use of bioinformatics tools , 2006, Proteomics.

[55]  Andrew M Woodward,et al.  Fast automatic registration of images using the phase of a complex wavelet transform: application to proteome gels. , 2004, The Analyst.

[56]  M. Ünlü,et al.  Difference gel electrophoresis. A single gel method for detecting changes in protein extracts , 1997, Electrophoresis.

[57]  Andrew Emili,et al.  Interpretation of large-scale quantitative shotgun proteomic profiles for biomarker discovery. , 2008, Current opinion in molecular therapeutics.

[58]  P. O’Farrell High resolution two-dimensional electrophoresis of proteins. , 1975, The Journal of biological chemistry.

[59]  P. Eilers Parametric time warping. , 2004, Analytical chemistry.

[60]  Anders Blomberg,et al.  Warping two‐dimensional electrophoresis gel images to correct for geometric distortions of the spot pattern , 2002, Electrophoresis.

[61]  Harald Martens,et al.  An improved pixel‐based approach for analyzing images in two‐dimensional gel electrophoresis , 2008, Electrophoresis.

[62]  Pedro Larrañaga,et al.  A review of feature selection techniques in bioinformatics , 2007, Bioinform..

[63]  Elias S. Manolakos,et al.  Proteomic Feature Maps: A new visualization approach in proteomics analysis , 2009, J. Biomed. Informatics.

[64]  M Daszykowski,et al.  A comparison of three algorithms for chromatograms alignment. , 2006, Journal of chromatography. A.

[65]  Mia K. Markey,et al.  A machine learning perspective on the development of clinical decision support systems utilizing mass spectra of blood samples , 2006, J. Biomed. Informatics.

[66]  John Ashburner,et al.  A fast diffeomorphic image registration algorithm , 2007, NeuroImage.

[67]  Tanasit Techanukul,et al.  Comparison of three commercially available DIGE analysis software packages: minimal user intervention in gel-based proteomics. , 2009, Journal of proteome research.

[68]  J R Yates,et al.  Emerging tandem-mass-spectrometry techniques for the rapid identification of proteins. , 1997, Trends in biotechnology.

[69]  Fernando M. Maroto,et al.  ChromAlign: A two-step algorithmic procedure for time alignment of three-dimensional LC-MS chromatographic surfaces. , 2006, Analytical chemistry.

[70]  J. Yergey A GENERAL APPROACH TO CALCULATING ISOTOPIC DISTRIBUTIONS FOR MASS SPECTROMETRY. , 1983, Journal of mass spectrometry : JMS.

[71]  Tülay Adali,et al.  Independent component analysis of 2‐D electrophoresis gels , 2008, Electrophoresis.

[72]  Lukas N. Mueller,et al.  An integrated mass spectrometric and computational framework for the analysis of protein interaction networks , 2007, Nature Biotechnology.

[73]  Pan Du,et al.  Bioinformatics Original Paper Improved Peak Detection in Mass Spectrum by Incorporating Continuous Wavelet Transform-based Pattern Matching , 2022 .

[74]  Matthias Berth,et al.  The state of the art in the analysis of two-dimensional gel electrophoresis images , 2007, Applied Microbiology and Biotechnology.

[75]  Harald Martens,et al.  Improved dynamic range of protein quantification in silver‐stained gels by modelling gel images over time , 2009, Electrophoresis.

[76]  E. Marcotte,et al.  Chromatographic alignment of ESI-LC-MS proteomics data sets by ordered bijective interpolated warping. , 2006, Analytical chemistry.

[77]  John D. Owens,et al.  GPU Computing , 2008, Proceedings of the IEEE.

[78]  Guang-Zhong Yang,et al.  The Future of Large-Scale Collaborative Proteomics , 2008, Proceedings of the IEEE.

[79]  R D Appel,et al.  Melanie II – a third‐generation software package for analysis of two‐dimensional electrophoresis images: II. Algorithms , 1997, Electrophoresis.

[80]  J. Klose Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues , 1975, Humangenetik.

[81]  Richard D. Smith,et al.  Robust algorithm for alignment of liquid chromatography-mass spectrometry analyses in an accurate mass and time tag data analysis pipeline. , 2006, Analytical chemistry.

[82]  Helmut E Meyer,et al.  Examination of 2‐DE in the Human Proteome Organisation Brain Proteome Project pilot studies with the new RAIN gel matching technique , 2006, Proteomics.

[83]  Maciek Sasinowski,et al.  Deconvolution filters to enhance resolution of dense time-of-flight survey spectra in the time-lag optimization range. , 2006, Rapid communications in mass spectrometry : RCM.

[84]  N. Samatova,et al.  Detecting differential and correlated protein expression in label-free shotgun proteomics. , 2006, Journal of proteome research.

[85]  Hua Lin,et al.  Quantifying reproducibility for differential proteomics: noise analysis for protein liquid chromatography-mass spectrometry of human serum , 2004, Bioinform..

[86]  John Quackenbush Microarray data normalization and transformation , 2002, Nature Genetics.

[87]  Guang-Zhong Yang,et al.  Informatics and Statistics for Analyzing 2-D Gel Electrophoresis Images , 2010, Proteome Bioinformatics.

[88]  John D. Storey,et al.  Statistical significance for genomewide studies , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[89]  Yuki Sugiura,et al.  Ion Image Reconstruction Using BioMap Software , 2010 .

[90]  Vincent A Emanuele,et al.  Benchmarking currently available SELDI‐TOF MS preprocessing techniques , 2009, Proteomics.

[91]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[92]  Kathryn S Lilley,et al.  Maximising sensitivity for detecting changes in protein expression: Experimental design using minimal CyDyes , 2005, Proteomics.

[93]  M. Vestal,et al.  Modern MALDI time-of-flight mass spectrometry. , 2009, Journal of mass spectrometry : JMS.

[94]  Guang-Zhong Yang,et al.  ProteomeGRID: towards a high‐throughput proteomics pipeline through opportunistic cluster image computing for two‐dimensional gel electrophoresis , 2004, Proteomics.

[95]  Werner Welthagen,et al.  Statistical methods for comparing comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry results: metabolomic analysis of mouse tissue extracts. , 2005, Journal of chromatography. A.

[96]  Pierangelo Veltri Algorithms and tools for analysis and management of mass spectrometry data , 2008, Briefings Bioinform..

[97]  K. Markides,et al.  Chromatographic alignment by warping and dynamic programming as a pre-processing tool for PARAFAC modelling of liquid chromatography-mass spectrometry data. , 2002, Journal of chromatography. A.

[98]  Pei Wang,et al.  Bioinformatics Original Paper a Suite of Algorithms for the Comprehensive Analysis of Complex Protein Mixtures Using High-resolution Lc-ms , 2022 .

[99]  Joachim M. Buhmann,et al.  Adaptive bandwidth selection for biomarker discovery in mass spectrometry , 2009, Artif. Intell. Medicine.

[100]  Jacob D. Jaffe,et al.  PEPPeR, a Platform for Experimental Proteomic Pattern Recognition*S , 2006, Molecular & Cellular Proteomics.

[101]  Gunnar Bolmsjö,et al.  Automating gel image acquisition. , 2003, Journal of proteome research.

[102]  Maciek Sasinowski,et al.  Resampling and deconvolution of linear time-of-flight records for enhanced protein profiling. , 2006, Rapid communications in mass spectrometry : RCM.

[103]  Hanspeter Pfister,et al.  Hardware-accelerated 3D visualization of mass spectrometry data , 2005, VIS 05. IEEE Visualization, 2005..

[104]  Jens Stoye,et al.  ChromA: signal-based retention time alignment for chromatography–mass spectrometry data , 2009, Bioinform..

[105]  Melanie Hilario,et al.  Feature Extraction from Mass Spectra for Classification of Pathological States , 2005, PKDD.

[106]  Lennart Martens,et al.  The power of cooperative investigation: Summary and comparison of the HUPO Brain Proteome Project pilot study results , 2006, Proteomics.

[107]  Joachim M. Buhmann,et al.  Time-series alignment by non-negative multiple generalized canonical correlation analysis , 2007, BMC Bioinformatics.

[108]  Kathryn S Lilley,et al.  Comparison of DIGE and post‐stained gel electrophoresis with both traditional and SameSpots analysis for quantitative proteomics , 2008, Proteomics.

[109]  Lukas N. Mueller,et al.  SuperHirn – a novel tool for high resolution LC‐MS‐based peptide/protein profiling , 2007, Proteomics.

[110]  Rune Matthiesen,et al.  Methods, algorithms and tools in computational proteomics: A practical point of view , 2007, Proteomics.

[111]  V. Šmídl,et al.  The Variational Bayes Method in Signal Processing , 2005 .

[112]  Mia K. Markey,et al.  Parametric Power Spectral Density Analysis of Noise from Instrumentation in MALDI TOF Mass Spectrometry , 2008 .

[113]  M. MacCoss,et al.  Label-free comparative analysis of proteomics mixtures using chromatographic alignment of high-resolution muLC-MS data. , 2008, Analytical chemistry.

[114]  Tae-Seong Kim,et al.  Bayesian Inference for 2D Gel Electrophoresis Image Analysis , 2007, BIRD.

[115]  Antonio Carvajal-Rodríguez,et al.  Application of relative warp analysis to the evaluation of two-dimensional gels in proteomics: studying isoelectric point and relative molecular mass variation. , 2005, Journal of proteome research.

[116]  Knut Reinert,et al.  Algorithms for the Automated Absolute Quantification of Diagnostic Markers in Complex Proteomics Samples , 2005, CompLife.

[117]  Karl Rohr,et al.  Geometric alignment of 2D gel electrophoresis images using physics-based elastic registration , 2008, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[118]  T W Randolph,et al.  Multiscale Processing of Mass Spectrometry Data , 2006, Biometrics.

[119]  John F. Keane,et al.  Near-Lossless Compression of Mass Spectra for Proteomics , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[120]  Peter James,et al.  Analysis of DIGE data using a linear mixed model allowing for protein‐specific dye effects , 2007, Proteomics.

[121]  Bertram Becher,et al.  Time‐based analysis of silver‐stained proteins in acrylamide gels , 2006, Electrophoresis.

[122]  Jeffrey S. Morris,et al.  Feature extraction and quantification for mass spectrometry in biomedical applications using the mean spectrum , 2005, Bioinform..

[123]  Steffen Neumann,et al.  Highly sensitive feature detection for high resolution LC/MS , 2008, BMC Bioinformatics.

[124]  David P. Kreil,et al.  Determining a significant change in protein expression with DeCyder™ during a pair‐wise comparison using two‐dimensional difference gel electrophoresis , 2004, Proteomics.

[125]  S Veeser,et al.  Multiresolution image registration for two‐dimensional gel electrophoresis , 2001, Proteomics.

[126]  Richard D. Smith,et al.  High mass measurement accuracy determination for proteomics using multivariate regression fitting: application to electrospray ionization time-of-flight mass spectrometry. , 2003, Analytical chemistry.

[127]  Hiroshi Yamagiwa,et al.  Comparative evaluation of two two-dimensional gel electrophoresis image analysis software applications using synovial fluids from patients with joint disease , 2005, Journal of orthopaedic science : official journal of the Japanese Orthopaedic Association.

[128]  Leanna House,et al.  Bayesian Inference for Gene Expression and Proteomics: Nonparametric Models for Proteomic Peak Identification and Quantification , 2006 .

[129]  Antoine H P America,et al.  Comparative LC‐MS: A landscape of peaks and valleys , 2008, Proteomics.

[130]  Fredrik Levander,et al.  Wavelet-based method for noise characterization and rejection in high-performance liquid chromatography coupled to mass spectrometry. , 2008, Analytical chemistry.

[131]  Lars Konermann,et al.  A minimalist model for exploring conformational effects on the electrospray charge state distribution of proteins. , 2007, The journal of physical chemistry. B.

[132]  Richard D. Smith,et al.  Advances in proteomics data analysis and display using an accurate mass and time tag approach. , 2006, Mass spectrometry reviews.

[133]  Panagiotis Tsakanikas,et al.  Improving 2‐DE gel image denoising using contourlets , 2009, Proteomics.

[134]  Dante Mantini,et al.  Independent component analysis for the extraction of reliable protein signal profiles from MALDI-TOF mass spectra , 2008, Bioinform..

[135]  Beata Walczak,et al.  Pixel‐based analysis of multiple images for the identification of changes: A novel approach applied to unravel proteome patters of 2‐D electrophoresis gel images , 2007 .

[136]  Anders Björk,et al.  Improved method for peak picking in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. , 2004, Rapid communications in mass spectrometry : RCM.

[137]  D Van Dyck,et al.  Computer analysis of two‐dimensional electrophoresis gels: A new segmentation and modeling algorithm , 1997, Electrophoresis.

[138]  William J. Browne,et al.  Bayesian Analysis of SELDI-TOF data , 2005 .

[139]  Jeffrey S. Morris,et al.  Pinnacle: a fast, automatic and accurate method for detecting and quantifying protein spots in 2-dimensional gel electrophoresis data , 2008, Bioinform..

[140]  Jean-Charles Sanchez,et al.  MSight: An image analysis software for liquid chromatography‐mass spectrometry , 2005, Proteomics.

[141]  T. Shaler,et al.  Quantification of proteins and metabolites by mass spectrometry without isotopic labeling or spiked standards. , 2003, Analytical chemistry.

[142]  Hua Tang,et al.  A statistical method for chromatographic alignment of LC-MS data. , 2007, Biostatistics.

[143]  Richard M. Everson,et al.  Independent Component Analysis: Principles and Practice , 2001 .

[144]  Steven A Carr,et al.  Place of pattern in proteomic biomarker discovery. , 2005, Journal of proteome research.

[145]  Xiaobo Zhou,et al.  Reversible jump MCMC approach for peak identification for stroke SELDI mass spectrometry using mixture model , 2008, ISMB.

[146]  Jimmy Eng,et al.  A platform for accurate mass and time analyses of mass spectrometry data. , 2007, Journal of proteome research.

[147]  Asa M Wheelock,et al.  Troubleshooting image analysis in 2DE. , 2009, Methods in molecular biology.

[148]  Andrea S. Llera,et al.  Improving 2D-DIGE protein expression analysis by two-stage linear mixed models: assessing experimental effects in a melanoma cell study , 2008, Bioinform..

[149]  Jeffrey S. Morris,et al.  Understanding the characteristics of mass spectrometry data through the use of simulation , 2005, Cancer informatics.

[150]  Melanie Hilario,et al.  Approaches to dimensionality reduction in proteomic biomarker studies , 2007, Briefings Bioinform..

[151]  Jeffrey S. Morris,et al.  Improved peak detection and quantification of mass spectrometry data acquired from surface‐enhanced laser desorption and ionization by denoising spectra with the undecimated discrete wavelet transform , 2005, Proteomics.

[152]  Guang-Zhong Yang,et al.  Automated image alignment for 2D gel electrophoresis in a high-throughput proteomics pipeline , 2008, Bioinform..

[153]  J. Robben,et al.  Treatment of missing values for multivariate statistical analysis of gel‐based proteomics data , 2008, Proteomics.

[154]  Morgan C. Giddings,et al.  High-accuracy peptide mass fingerprinting using peak intensity data with machine learning. , 2008, Journal of proteome research.

[155]  Michael Unser,et al.  Elastic registration of biological images using vector-spline regularization , 2005, IEEE Transactions on Biomedical Engineering.

[156]  R. Jansen,et al.  SELDI-TOF mass spectra: a view on sources of variation. , 2007, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[157]  Knut Reinert,et al.  Computational Quantification of Peptides from LC-MS Data , 2008, J. Comput. Biol..

[158]  Asa M Wheelock,et al.  Software‐induced variance in two‐dimensional gel electrophoresis image analysis , 2005, Electrophoresis.

[159]  Jim Graham,et al.  Statistical models of shape for the analysis of protein spots in two‐dimensional electrophoresis gel images , 2003, Proteomics.

[160]  Frank Suits,et al.  A noise model for mass spectrometry based proteomics , 2008, Bioinform..

[161]  Benoit M Dawant,et al.  Integrating spatially resolved three-dimensional MALDI IMS with in vivo magnetic resonance imaging , 2008, Nature Methods.

[162]  Keith Richardson,et al.  Noise filtering techniques for electrospray quadrupole time of flight mass spectra , 2003, Journal of the American Society for Mass Spectrometry.

[163]  Peng Zhang,et al.  Peak detection using peak tree approach for mass spectrometry data , 2008, Int. J. Hybrid Intell. Syst..

[164]  Guang-Zhong Yang,et al.  Tissue Characterization Using Dimensionality Reduction and Fluorescence Imaging , 2006, MICCAI.

[165]  Jeffrey S. Morris,et al.  Bayesian Analysis of Mass Spectrometry Proteomic Data Using Wavelet‐Based Functional Mixed Models , 2008, Biometrics.

[166]  J.-F. Giovannelli,et al.  Bayesian estimation for molecular profile reconstruction in proteomics based on liquid chromatography and mass spectrometry , 2007, 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[167]  Lukas N. Mueller,et al.  An assessment of software solutions for the analysis of mass spectrometry based quantitative proteomics data. , 2008, Journal of proteome research.

[168]  Y Konishi,et al.  High Accuracy Molecular Weight Determination and Variation Characterization of Proteins Up To 80 ku by Ionspray Mass Spectrometry , 1991, Journal of the American Society for Mass Spectrometry.

[169]  Martijn Dijkstra,et al.  Peak quantification in surface‐enhanced laser desorption/ionization by using mixture models , 2006, Proteomics.

[170]  Jianwei Li Comparison of the capability of peak functions in describing real chromatographic peaks. , 2002, Journal of chromatography. A.

[171]  Timothy W Randolph,et al.  Signal detection in high-resolution mass spectrometry data. , 2008, Journal of proteome research.

[172]  Karl Rohr,et al.  Elastic registration of electrophoresis images using intensity information and point landmarks , 2004, Pattern Recognit..

[173]  Ali Mohammad-Djafari,et al.  Regularization, maximum entropy and probabilistic methods in mass spectrometry data processing problems , 2002 .

[174]  Kenji Miura,et al.  Imaging technologies for the detection of multiple stains in proteomics , 2003, Proteomics.

[175]  Beata Walczak,et al.  Preprocessing of two‐dimensional gel electrophoresis images , 2004, Proteomics.

[176]  Christof Schütte,et al.  Beating the Noise: New Statistical Methods for Detecting Signals in MALDI-TOF Spectra Below Noise Level , 2006, CompLife.

[177]  Z. Smilansky,et al.  Automatic registration for images of two‐dimensional protein gels , 2001, Electrophoresis.

[178]  Kathryn S. Lilley,et al.  studies using differential in-gel electrophoresis. , 2007 .

[179]  Benno Schwikowski,et al.  Signal Maps for Mass Spectrometry-based Comparative Proteomics* , 2006, Molecular & Cellular Proteomics.

[180]  David Fenyö,et al.  Informatics development: challenges and solutions for MALDI mass spectrometry. , 2008, Mass spectrometry reviews.

[181]  Andreas Hildebrandt,et al.  Efficient Analysis of Mass Spectrometry Data Using the Isotope Wavelet , 2008 .

[182]  M. Senko,et al.  Determination of monoisotopic masses and ion populations for large biomolecules from resolved isotopic distributions , 1995, Journal of the American Society for Mass Spectrometry.

[183]  J. Yates,et al.  An automated multidimensional protein identification technology for shotgun proteomics. , 2001, Analytical chemistry.

[184]  Jeffrey S. Morris,et al.  AUTOMATED ANALYSIS OF QUANTITATIVE IMAGE DATA USING ISOMORPHIC FUNCTIONAL MIXED MODELS, WITH APPLICATION TO PROTEOMICS DATA. , 2011, The annals of applied statistics.

[185]  M. Hilario,et al.  Processing and classification of protein mass spectra. , 2006, Mass spectrometry reviews.

[186]  Radford M. Neal,et al.  Difference detection in LC-MS data for protein biomarker discovery , 2007, Bioinform..

[187]  Elena Marchiori,et al.  Tools for computational processing of LC-MS datasets: A user's perspective , 2007, Comput. Methods Programs Biomed..

[188]  Arnaud Droit,et al.  Bioinformatic Standards for Proteomics-Oriented Mass Spectrometry , 2006 .

[189]  Manolis Tsiknakis,et al.  An Integrated Clinico-Proteomics Information Management and Analysis Platform , 2008, 2008 21st IEEE International Symposium on Computer-Based Medical Systems.

[190]  Daniel Howard,et al.  MALDI-TOF Baseline Drift Removal Using Stochastic Bernstein Approximation , 2006, EURASIP J. Adv. Signal Process..

[191]  F. Regnier,et al.  Recent advancements in differential proteomics based on stable isotope coding. , 2005, Briefings in functional genomics & proteomics.

[192]  Bart Mertens Organizing a Competition on Clinical Mass Spectrometry Based Proteomic Diagnosis , 2008, Statistical applications in genetics and molecular biology.

[193]  Claus A. Andersson,et al.  Correlation optimized warping and dynamic time warping as preprocessing methods for chromatographic data , 2004 .

[194]  Tim W. Nattkemper,et al.  Peak intensity prediction in MALDI-TOF mass spectrometry: A machine learning study to support quantitative proteomics , 2008, BMC Bioinformatics.

[195]  Thomas P Conrads,et al.  The SELDI-TOF MS approach to proteomics: protein profiling and biomarker identification. , 2002, Biochemical and biophysical research communications.

[196]  Benoit M Dawant,et al.  Three-dimensional visualization of protein expression in mouse brain structures using imaging mass spectrometry , 2005, Journal of the American Society for Mass Spectrometry.

[197]  P. Chaurand,et al.  Processing MALDI Mass Spectra to Improve Mass Spectral Direct Tissue Analysis. , 2007, International journal of mass spectrometry.

[198]  F. Villers,et al.  Statistics for proteomics: experimental design and 2-DE differential analysis. , 2007, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[199]  M. Vannucci,et al.  A novel wavelet‐based thresholding method for the pre‐processing of mass spectrometry data that accounts for heterogeneous noise , 2008, Proteomics.

[200]  Mitsutoshi Setou,et al.  Statistical Analysis of IMS Dataset with ClinproTool Software , 2010 .

[201]  J. Bernhardt,et al.  Using standard positions and image fusion to create proteome maps from collections of two‐dimensional gel electrophoresis images , 2003, Proteomics.

[202]  Andreas Hildebrandt,et al.  Highly accelerated feature detection in proteomics data sets using modern graphics processing units , 2009, Bioinform..

[203]  Alon Efrat,et al.  Geometric algorithms for the analysis of 2D-electrophoresis gels , 2001, RECOMB.