FE-Study on the Effect of Gradient Concrete on Early Constraint and Crack Risk

In long-lasting mass concrete structures the desired material properties of the concrete mix to realize a durable concrete and a concrete surface without cracks conflict with each other. The requirement of concrete with high durability leads to high thermal energy release and therefore, as another consequence, to high crack risk. Crack reduction is achieved by use of concrete with low hydration energy, which on the other hand leads to a decrease in concrete durability. Besides from optimized base materials and concrete technology, a gradient material distribution in the cross-section could reduce the problem since durable concrete is needed near the surface and the requirement of low-hydration energy is located in the center of the member. A simplified model is used to investigate the possible effect of a gradient concrete material distribution in mass concrete structures on crack reduction. The results of the analysis show that gradient concrete might contribute to lowering the constraint stresses and therefore the crack risk during concrete hardening.

[1]  Bernhard A. Schrefler,et al.  Hygro‐thermo‐chemo‐mechanical modelling of concrete at early ages and beyond. Part II: shrinkage and creep of concrete , 2006 .

[2]  Jan Akkermann,et al.  Risse in Fundamenten von Onshore‐Windenergieanlagen , 2017 .

[3]  Werner Sobek,et al.  Gradientenbetontechnologie: Von der Mischungsentwicklung über den Bauteilentwurf bis zur automatisierten Herstellung , 2016 .

[4]  F. Rostásy,et al.  Zwang und Rißbildung in Wänden auf Fundamenten , 1990 .

[5]  Bundesanstalt für Wasserbau Rissmechanik in dicken Stahlbetonbauteilen bei abfließender Hydratationswärme , 2010 .

[6]  Konrad Bergmeister,et al.  Entwicklung der Materialeigenschaften im jungen Massenbeton: Bestimmung des zeitlichen Verlaufs der Materialparameter in der Hydratationsphase als Basis für die Modellierung der Risswahrscheinlichkeit im Massenb , 2017 .

[7]  Karlheinz Haveresch,et al.  Hinweise für den Ansatz der Betonzugfestigkeit beim Nachweis der Mindestbewehrung für frühen Zwang gemäß Eurocode 2‐2 (DIN EN 1992‐2/NA) , 2016 .

[8]  Luc Taerwe,et al.  Degree of hydration-based description of mechanical properties of early age concrete , 1996 .

[9]  Werner Sobek,et al.  Functionally graded concrete: Numerical design methods and experimental tests of mass‐optimized structural components , 2017 .

[10]  R. Duballeta,et al.  Classification of building systems for concrete 3D printing , 2018 .

[12]  Domenico Asprone,et al.  3D printing of reinforced concrete elements: Technology and design approach , 2018 .

[13]  Akira Hosoda,et al.  Modeling and Verification of Early Age Thermal Stress in Second Lining Concrete of NATM Tunnels , 2017 .

[14]  Roman Wendner,et al.  Age-dependent Size Effect and Fracture Characteristics of Ultra High Performance Concrete , 2016, 1608.08786.

[15]  Z. Giergiczny,et al.  Influence of mass concrete constituents on its properties , 2017 .

[16]  Christoph Gehlen,et al.  Performance‐based durability design, carbonation, part 3: PSF approach and a proposal for the revision of deemed‐to‐satisfy rules , 2016 .

[17]  Behrokh Khoshnevis,et al.  Cementitious materials for construction-scale 3D printing: Laboratory testing of fresh printing mixture , 2017 .

[18]  Clément Gosselin,et al.  Large-scale 3D printing of ultra-high performance concrete – a new processing route for architects and builders , 2016 .

[19]  Dirk Schlicke,et al.  Minimum reinforcement for crack width control in restrained concrete members considering the deformation compatibility , 2015 .

[20]  Christoph Gehlen,et al.  Performance based durability design, carbonation part 1 – Benchmarking of European present design rules , 2016 .

[21]  Mehmet Sakin,et al.  3D Printing of Buildings: Construction of the Sustainable Houses of the Future by BIM , 2017 .

[22]  Gianluca Cusatis,et al.  Hygro-thermo-chemical modeling of high performance concrete. I: Theory , 2009 .

[23]  P Schiessl,et al.  ZUR FRAGE DER ZULAESSIGEN RISSBREITE UND DER ERFORDERLICHEN BETONDECKUNG IM STAHLBETONBAU UNTER BESONDERER BERUECKSICHTIGUNG DER KARBONATISIERUNG DES BETONS , 1976 .

[24]  K. Bergmeister,et al.  Untersuchung zur Rissentwicklung im Massenbeton , 2017 .

[25]  Werner Sobek,et al.  Gradientenbeton – Numerische Entwurfsmethoden und experimentelle Untersuchung gewichtsoptimierter Bauteile , 2015 .

[26]  Ming Jen Tan,et al.  Fresh and hardened properties of 3D printable cementitious materials for building and construction , 2018 .

[27]  Christoph Gehlen,et al.  Performance‐based durability design, carbonation part 2 – Classification of concrete , 2016 .

[28]  Rainer Ehmann,et al.  Mindestbewehrung zur Begrenzung der Rissbreiten in Stahlbetonbauteilen infolge des Hydratationsprozesses: Teil 2: Neues Konzept auf Grundlage der Verformungskompatibilität , 2012 .

[29]  Bernhard A. Schrefler,et al.  Hygro‐thermo‐chemo‐mechanical modelling of concrete at early ages and beyond. Part I: hydration and hygro‐thermal phenomena , 2006 .

[30]  Gianluca Cusatis,et al.  Hygro-thermo-chemical modeling of high-performance concrete. II: Numerical implementation, calibration, and validation , 2009 .