LANCZOSNET: MULTI-SCALE DEEP GRAPH CONVO-

We propose the Lanczos network (LanczosNet), which uses the Lanczos algorithm to construct low rank approximations of the graph Laplacian for graph convolution. Relying on the tridiagonal decomposition of the Lanczos algorithm, we not only efficiently exploit multi-scale information via fast approximated computation of matrix power but also design learnable spectral filters. Being fully differentiable, LanczosNet facilitates both graph kernel learning as well as learning node embeddings. We show the connection between our LanczosNet and graph based manifold learning methods, especially the diffusion maps. We benchmark our model against several recent deep graph networks on citation networks and QM8 quantum chemistry dataset. Experimental results show that our model achieves the state-of-the-art performance in most tasks.

[1]  Amit Singer,et al.  Detecting intrinsic slow variables in stochastic dynamical systems by anisotropic diffusion maps , 2009, Proceedings of the National Academy of Sciences.

[2]  Pierre Vandergheynst,et al.  Geometric Deep Learning: Going beyond Euclidean data , 2016, IEEE Signal Process. Mag..

[3]  Ann B. Lee,et al.  Geometric diffusions as a tool for harmonic analysis and structure definition of data: multiscale methods. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Donald F. Towsley,et al.  Diffusion-Convolutional Neural Networks , 2015, NIPS.

[5]  Razvan Pascanu,et al.  Relational inductive biases, deep learning, and graph networks , 2018, ArXiv.

[6]  Mikhail Belkin,et al.  Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples , 2006, J. Mach. Learn. Res..

[7]  R. Coifman,et al.  Non-linear independent component analysis with diffusion maps , 2008 .

[8]  Sanja Fidler,et al.  NerveNet: Learning Structured Policy with Graph Neural Networks , 2018, ICLR.

[9]  Le Song,et al.  Discriminative Embeddings of Latent Variable Models for Structured Data , 2016, ICML.

[10]  Pietro Liò,et al.  Graph Attention Networks , 2017, ICLR.

[11]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[12]  Pierre Vandergheynst,et al.  Graph Signal Processing: Overview, Challenges, and Applications , 2017, Proceedings of the IEEE.

[13]  Jure Leskovec,et al.  node2vec: Scalable Feature Learning for Networks , 2016, KDD.

[14]  Max Welling,et al.  Semi-Supervised Classification with Graph Convolutional Networks , 2016, ICLR.

[15]  Joan Bruna,et al.  Community Detection with Graph Neural Networks , 2017 .

[16]  Pascal Frossard,et al.  The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains , 2012, IEEE Signal Processing Magazine.

[17]  Ruslan Salakhutdinov,et al.  Revisiting Semi-Supervised Learning with Graph Embeddings , 2016, ICML.

[18]  Ah Chung Tsoi,et al.  The Graph Neural Network Model , 2009, IEEE Transactions on Neural Networks.

[19]  Ronald R. Coifman,et al.  Diffusion Maps, Spectral Clustering and Eigenfunctions of Fokker-Planck Operators , 2005, NIPS.

[20]  Raia Hadsell,et al.  Graph networks as learnable physics engines for inference and control , 2018, ICML.

[21]  Richard S. Zemel,et al.  Gated Graph Sequence Neural Networks , 2015, ICLR.

[22]  Renjie Liao,et al.  Graph Partition Neural Networks for Semi-Supervised Classification , 2018, ICLR.

[23]  Sanja Fidler,et al.  3D Graph Neural Networks for RGBD Semantic Segmentation , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[24]  Pietro Perona,et al.  Self-Tuning Spectral Clustering , 2004, NIPS.

[25]  Joan Bruna,et al.  Few-Shot Learning with Graph Neural Networks , 2017, ICLR.

[26]  D. Donoho,et al.  Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Neta Rabin,et al.  Multi-scale kernels for Nyström based extension schemes , 2018, Appl. Math. Comput..

[28]  Alán Aspuru-Guzik,et al.  Convolutional Networks on Graphs for Learning Molecular Fingerprints , 2015, NIPS.

[29]  Joan Bruna,et al.  Spectral Networks and Locally Connected Networks on Graphs , 2013, ICLR.

[30]  Shun-ichi Amari,et al.  Methods of information geometry , 2000 .

[31]  Yoel Shkolnisky,et al.  Diffusion Interpretation of Nonlocal Neighborhood Filters for Signal Denoising , 2009, SIAM J. Imaging Sci..

[32]  Jordan B. Pollack,et al.  Recursive Distributed Representations , 1990, Artif. Intell..

[33]  Jure Leskovec,et al.  Inductive Representation Learning on Large Graphs , 2017, NIPS.

[34]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[35]  Raquel Urtasun,et al.  Deep Parametric Continuous Convolutional Neural Networks , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[36]  Mathias Niepert,et al.  Learning Convolutional Neural Networks for Graphs , 2016, ICML.

[37]  Hongyuan Zha,et al.  Low-Rank Matrix Approximation Using the Lanczos Bidiagonalization Process with Applications , 1999, SIAM J. Sci. Comput..

[38]  C. Lanczos An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .

[39]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[40]  Pierre Vandergheynst,et al.  Wavelets on Graphs via Spectral Graph Theory , 2009, ArXiv.

[41]  Dimitrios Giannakis,et al.  Dynamics-Adapted Cone Kernels , 2014, SIAM J. Appl. Dyn. Syst..

[42]  Mikhail Belkin,et al.  Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering , 2001, NIPS.

[43]  U. Feige,et al.  Spectral Graph Theory , 2015 .

[44]  John D. Lafferty,et al.  Diffusion Kernels on Statistical Manifolds , 2005, J. Mach. Learn. Res..

[45]  Kilian Q. Weinberger,et al.  Metric Learning for Kernel Regression , 2007, AISTATS.

[46]  Xiaojin Zhu,et al.  --1 CONTENTS , 2006 .

[47]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[48]  Lisa Zhang,et al.  Inference in Probabilistic Graphical Models by Graph Neural Networks , 2018, 2019 53rd Asilomar Conference on Signals, Systems, and Computers.

[49]  Geoffrey E. Hinton,et al.  Rectified Linear Units Improve Restricted Boltzmann Machines , 2010, ICML.

[50]  Le Song,et al.  Stochastic Training of Graph Convolutional Networks with Variance Reduction , 2017, ICML.

[51]  Sanja Fidler,et al.  Situation Recognition with Graph Neural Networks , 2018 .

[52]  O. A. von Lilienfeld,et al.  Electronic spectra from TDDFT and machine learning in chemical space. , 2015, The Journal of chemical physics.

[53]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[54]  Mathias Niepert,et al.  Learning Graph Representations with Embedding Propagation , 2017, NIPS.

[55]  Luca Antiga,et al.  Automatic differentiation in PyTorch , 2017 .

[56]  Xavier Bresson,et al.  Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering , 2016, NIPS.

[57]  Vijay S. Pande,et al.  MoleculeNet: a benchmark for molecular machine learning , 2017, Chemical science.

[58]  A. Singer From graph to manifold Laplacian: The convergence rate , 2006 .

[59]  Zhizhen Zhao,et al.  Analog forecasting with dynamics-adapted kernels , 2014, 1412.3831.

[60]  P. Vandergheynst,et al.  Accelerated filtering on graphs using Lanczos method , 2015, 1509.04537.

[61]  Samuel S. Schoenholz,et al.  Neural Message Passing for Quantum Chemistry , 2017, ICML.

[62]  Joan Bruna,et al.  Deep Convolutional Networks on Graph-Structured Data , 2015, ArXiv.

[63]  Ulrike von Luxburg,et al.  A tutorial on spectral clustering , 2007, Stat. Comput..

[64]  Cao Xiao,et al.  FastGCN: Fast Learning with Graph Convolutional Networks via Importance Sampling , 2018, ICLR.

[65]  Razvan Pascanu,et al.  Learning Deep Generative Models of Graphs , 2018, ICLR 2018.

[66]  William H. Press,et al.  Numerical Recipes 3rd Edition: The Art of Scientific Computing , 2007 .

[67]  Regina Barzilay,et al.  Junction Tree Variational Autoencoder for Molecular Graph Generation , 2018, ICML.

[68]  Ronen Talmon,et al.  Empirical intrinsic geometry for nonlinear modeling and time series filtering , 2013, Proceedings of the National Academy of Sciences.