Finding Minimal Addition Chains with a Particle Swarm Optimization Algorithm

The addition chains with minimal length are the basic block to the optimal computation of finite field exponentiations. It has very important applications in the areas of error-correcting codes and cryptography. However, obtaining the shortest addition chains for a given exponent is a NP-hard problem. In this work we propose the adaptation of a Particle Swarm Optimization algorithm to deal with this problem. Our proposal is tested on several exponents whose addition chains are considered hard to find. We obtained very promising results.

[1]  Jesus A. Gonzalez,et al.  Advances in Artificial Intelligence – IBERAMIA 2004 , 2004, Lecture Notes in Computer Science.

[2]  Francisco Rodríguez-Henríquez,et al.  An Artificial Immune System Heuristic for Generating Short Addition Chains , 2008, IEEE Transactions on Evolutionary Computation.

[3]  Ç. Koç Analysis of sliding window techniques for exponentiation , 1995 .

[4]  Daniel M. Gordon,et al.  A Survey of Fast Exponentiation Methods , 1998, J. Algorithms.

[5]  Noboru Kunihiro,et al.  New Methods for Generating Short Addition Chains , 2000 .

[6]  Carlos A. Coello Coello,et al.  Improving PSO-Based Multi-objective Optimization Using Crowding, Mutation and epsilon-Dominance , 2005, EMO.

[7]  Donald Ervin Knuth,et al.  The Art of Computer Programming, Volume II: Seminumerical Algorithms , 1970 .

[8]  Bassem Jarboui,et al.  Combinatorial particle swarm optimization (CPSO) for partitional clustering problem , 2007, Appl. Math. Comput..

[9]  Francisco Rodríguez-Henríquez,et al.  On the Optimal Computaion of Finite Field Exponentiation , 2004, IBERAMIA.

[10]  Alfred Menezes,et al.  Handbook of Applied Cryptography , 2018 .

[11]  Kazuyoshi Takagi,et al.  A Fast Algorithm for Multiplicative Inversion in GF(2m) Using Normal Basis , 2001, IEEE Trans. Computers.

[12]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[13]  Francisco Rodríguez-Henríquez,et al.  Finding Optimal Addition Chains Using a Genetic Algorithm Approach , 2005, CIS.

[14]  Sanjoy Das,et al.  Multi-objective hybrid PSO using µ-fuzzy dominance , 2007, GECCO '07.

[15]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[16]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[17]  J. Berstel,et al.  Efficient computation of addition chains , 1994, Journal de Théorie des Nombres de Bordeaux.