Multilevel vorticity confinement for water turbulence simulation

Physically based fluid simulation can provide realism, but simulating water turbulence remains challenging. Recently, there have been much work on gas turbulence, but these algorithms mostly rely on the Kolmogorov theory which is not directly applicable to water turbulence simulation. This paper presents a novel technique for simulating water turbulence. We show that sub-grid turbulence can be created by employing a flow-scale separation technique. We adopted the multi-scale flow separation method to derive a special small-scale equation. Small-scale velocities are then generated and manipulated by the equation. To simulate the turbulence effect, this work employed the vorticity confinement method. By extending the original method to multi-level, we effectively simulate energy cascading effects.

[1]  Ken Museth,et al.  Dynamic Tubular Grid: An Efficient Data Structure and Algorithms for High Resolution Level Sets , 2006, J. Sci. Comput..

[2]  Ronald Fedkiw,et al.  An Unconditionally Stable MacCormack Method , 2008, J. Sci. Comput..

[3]  Keenan Crane,et al.  Energy-preserving integrators for fluid animation , 2009, ACM Trans. Graph..

[4]  Doug L. James,et al.  Wavelet turbulence for fluid simulation , 2008, SIGGRAPH 2008.

[5]  Frédo Durand,et al.  ACM SIGGRAPH Asia 2009 Papers , 2009 .

[6]  Ignacio Llamas,et al.  Advections with Significantly Reduced Dissipation and Diffusion , 2007, IEEE Transactions on Visualization and Computer Graphics.

[7]  Markus H. Gross,et al.  Synthetic turbulence using artificial boundary layers , 2009, ACM Trans. Graph..

[8]  Robert Bridson,et al.  Evolving sub-grid turbulence for smoke animation , 2008, SCA '08.

[9]  Ken Perlin,et al.  An image synthesizer , 1988 .

[10]  Keenan Crane,et al.  Energy-preserving integrators for fluid animation , 2009, SIGGRAPH 2009.

[11]  J. Steinhoff,et al.  Modification of the Euler equations for ‘‘vorticity confinement’’: Application to the computation of interacting vortex rings , 1994 .

[12]  Ronald Fedkiw,et al.  Simulating water and smoke with an octree data structure , 2004, ACM Trans. Graph..

[13]  Tony DeRose,et al.  Wavelet noise , 2005, SIGGRAPH 2005.

[14]  Hyeong-Seok Ko,et al.  A Semi‐Lagrangian CIP Fluid Solver without Dimensional Splitting , 2008, Comput. Graph. Forum.

[15]  Robert Bridson,et al.  Animating sand as a fluid , 2005, ACM Trans. Graph..

[16]  Jos Stam,et al.  Stable fluids , 1999, SIGGRAPH.

[17]  Ronald Fedkiw,et al.  Visual simulation of smoke , 2001, SIGGRAPH.

[18]  Sang Il Park,et al.  Vortex fluid for gaseous phenomena , 2005, SCA '05.

[19]  Hyeong-Seok Ko,et al.  Derivative Particles for Simulating Detailed Movements of Fluids , 2007, IEEE Transactions on Visualization and Computer Graphics.

[20]  Suresh Menon,et al.  Explicit small-scale velocity simulation for high-Re turbulent flows. Part II: Non-homogeneous flows , 2007, J. Comput. Phys..

[21]  Taku Komura,et al.  Topology matching for fully automatic similarity estimation of 3D shapes , 2001, SIGGRAPH.

[22]  John Steinhoff,et al.  Large Reynolds Number Turbulence Modeling with Vorticity Confinement , 2007 .

[23]  Hyeong-Seok Ko,et al.  Stable but nondissipative water , 2005, TOGS.

[24]  Ming C. Lin,et al.  Fast animation of turbulence using energy transport and procedural synthesis , 2008, SIGGRAPH Asia '08.

[25]  Hyeong-Seok Ko,et al.  Stretching and wiggling liquids , 2009, ACM Trans. Graph..

[26]  Suresh Menon,et al.  Explicit small-scale velocity simulation for high-Re turbulent flows , 2006, J. Comput. Phys..

[27]  D. Moreau,et al.  Flow Noise , 1958, Nature.

[28]  Jonathan M. Cohen,et al.  Low viscosity flow simulations for animation , 2008, SCA '08.

[29]  Eugene Fiume,et al.  Turbulent wind fields for gaseous phenomena , 1993, SIGGRAPH.

[30]  Ronald Fedkiw,et al.  A vortex particle method for smoke, water and explosions , 2005, ACM Trans. Graph..