Prospects For Quantum Integrated Circuits

Recent progress in research on resonant tunneling diodes, and on lateral quantization effects in quantum wells renews hope for the development of active unipolar heterojunction devices which incorporate no depletion layers, and hence can be extremely compact in both vertical and lateral dimensions. If such devices meeting the fundamental requirements for ultrahigh density integrated circuits can be developed, and if revolutionary chip architectures which overcome current interconnection limitations can be devised, then a new generation of integrated circuits approaching the ultimate limits of functional density and functional throughput may eventually ensue. Although many of the most challenging problems in this scenario have not yet been addressed, progress is being made in the areas of fabrication and characterization of resonant tunneling devices, simulation of such devices using quantum transport theory, and simulation of nearest-neighbor connected (two-dimensional cellular automaton) architectures. This paper reviews the progress in these areas at Texas Instruments, and discusses the prospects for the future.

[1]  Stephen Wolfram,et al.  Theory and Applications of Cellular Automata , 1986 .

[2]  Hadis Morkoç,et al.  Resonant tunneling oscillations in a GaAs‐AlxGa1−xAs heterostructure at room temperature , 1985 .

[3]  Stephen J. Pearton,et al.  Optically detected carrier confinement to one and zero dimension in GaAs quantum well wires and boxes , 1986 .

[4]  M. Reed,et al.  Resonant tunneling through a double GaAs/AlAs superlattice barrier, single quantum well heterostructure , 1986 .

[5]  Wei Wang,et al.  Resonant tunneling of holes in AlAs-GaAs-AlAs heterostructures , 1985 .

[6]  R. T. Bate,et al.  Chapter 35 – Limits to Performance of VLSI Circuits , 1985 .

[7]  Louis E. Brus,et al.  Size effects in the excited electronic states of small colloidal CdS crystallites , 1984 .

[8]  R. Kiehl,et al.  Resonant tunneling transistor with quantum well base and high‐energy injection: A new negative differential resistance device , 1985 .

[9]  N. Margolus Physics-like models of computation☆ , 1984 .

[10]  J. Cooper,et al.  Limitations on the performance of field-effect devices for logic applications , 1981, Proceedings of the IEEE.

[11]  G.H. Heilmeier Microelectronics: End of the beginning or beginning of the end? , 1984, 1984 International Electron Devices Meeting.

[12]  Lynn Conway,et al.  Introduction to VLSI systems , 1978 .

[13]  Karel Culik,et al.  A Simple Universal Cellular Automaton and its One-Way and Totalistic Version , 1987, Complex Syst..

[14]  R. T. Bate The future of microstructure technology — The industry view☆ , 1986 .

[15]  R. A. Logan,et al.  Toward quantum well wires: Fabrication and optical properties , 1982 .

[16]  T. Sollner,et al.  Resonant tunneling through quantum wells at frequencies up to 2.5 THz , 1983 .

[17]  John G. McWhirter,et al.  Completely iterative, pipelined multiplier array suitable for VLSI , 1982 .

[18]  M. Reed,et al.  Spatial quantization in GaAs–AlGaAs multiple quantum dots , 1986 .

[19]  Shoichi Noguchi,et al.  Fault Tolerant Cellular Automata , 1975, J. Comput. Syst. Sci..

[20]  G. Frazier An Ideology For Nanoelectronics , 1988 .

[21]  M. Reed,et al.  Resonant tunneling through a HgTe/Hg1−xCdxTe double barrier, single quantum well heterostructure , 1986 .

[22]  Resonant tunneling in a GaAs/AlGaAs barrier/InGaAs quantum well heterostructure , 1987 .

[23]  Péter Gács,et al.  Reliable computation with cellular automata , 1983, J. Comput. Syst. Sci..

[24]  Margolus,et al.  Cellular-automata supercomputers for fluid-dynamics modeling. , 1986, Physical review letters.

[25]  R. Kolbas,et al.  Room-temperature negative differential resistance in strained-layer GaAs-AlGaAs-InGaAs quantum well heterostructures , 1986 .

[26]  H. Toyoshima,et al.  New Resonant Tunneling Diode with a Deep Quantum-Well , 1986 .

[27]  W. Frensley,et al.  Transient response of a tunneling device obtained from the Wigner function. , 1986, Physical review letters.

[28]  T. C. Mcgill,et al.  Inverted base‐collector tunnel transistors , 1985 .

[29]  L. Esaki,et al.  Resonant tunneling in semiconductor double barriers , 1974 .

[30]  Naoki Yokoyama,et al.  A New Functional, Resonant-Tunneling Hot Electron Transistor (RHET) , 1985 .

[31]  Federico Capasso,et al.  Sequential resonant tunneling through a multiquantum well superlattice , 1986 .

[32]  Harold G. Craighead,et al.  Optical spectroscopy of ultrasmall structures etched from quantum wells , 1986 .