Lipotoxicity and the gut-liver axis in NASH pathogenesis.

[1]  J. Venter,et al.  Gut Microbiome-Based Metagenomic Signature for Non-invasive Detection of Advanced Fibrosis in Human Nonalcoholic Fatty Liver Disease. , 2019, Cell metabolism.

[2]  Z. Goodman,et al.  The ASK1 inhibitor selonsertib in patients with nonalcoholic steatohepatitis: A randomized, phase 2 trial , 2017, Hepatology.

[3]  R. Jalan,et al.  Targeting the gut-liver axis in liver disease. , 2017, Journal of hepatology.

[4]  C. Kahn,et al.  Divergent effects of glucose and fructose on hepatic lipogenesis and insulin signaling , 2017, The Journal of clinical investigation.

[5]  A. Gastaldelli,et al.  Lack of NLRP3-inflammasome leads to gut-liver axis derangement, gut dysbiosis and a worsened phenotype in a mouse model of NAFLD , 2017, Scientific Reports.

[6]  Songtao Li,et al.  Sirtuin 3 acts as a negative regulator of autophagy dictating hepatocyte susceptibility to lipotoxicity , 2017, Hepatology.

[7]  M. Serlie,et al.  Fructose Consumption, Lipogenesis, and Non-Alcoholic Fatty Liver Disease , 2017, Nutrients.

[8]  J. C. Ralston,et al.  Fatty Acids and NLRP3 Inflammasome-Mediated Inflammation in Metabolic Tissues. , 2017, Annual review of nutrition.

[9]  P. Hirsova,et al.  Mixed-lineage kinase 3 pharmacological inhibition attenuates murine nonalcoholic steatohepatitis. , 2017, JCI insight.

[10]  J. Clària,et al.  The specialized proresolving lipid mediator maresin 1 protects hepatocytes from lipotoxic and hypoxia‐induced endoplasmic reticulum stress , 2017, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[11]  R. DeFronzo,et al.  Glucose kinetics: an update and novel insights into its regulation by glucagon and GLP-1 , 2017, Current opinion in clinical nutrition and metabolic care.

[12]  G. Szabo,et al.  Extracellular vesicles in liver disease and potential as biomarkers and therapeutic targets , 2017, Nature Reviews Gastroenterology &Hepatology.

[13]  Hong Yang,et al.  Mouse species-specific control of hepatocarcinogenesis and metabolism by FGF19/FGF15. , 2017, Journal of hepatology.

[14]  V. Wong,et al.  Increased risk of mortality by fibrosis stage in nonalcoholic fatty liver disease: Systematic review and meta‐analysis , 2017, Hepatology.

[15]  K. Schroder,et al.  NLRP3 inflammasome blockade reduces liver inflammation and fibrosis in experimental NASH in mice. , 2017, Journal of hepatology.

[16]  K. Cusi,et al.  Mitochondrial Adaptation in Nonalcoholic Fatty Liver Disease: Novel Mechanisms and Treatment Strategies , 2017, Trends in Endocrinology & Metabolism.

[17]  K. Moore,et al.  Store-Operated Ca2+ Entry Controls Induction of Lipolysis and the Transcriptional Reprogramming to Lipid Metabolism. , 2017, Cell metabolism.

[18]  F. Knop,et al.  Clinical relevance of the bile acid receptor TGR5 in metabolism. , 2017, The lancet. Diabetes & endocrinology.

[19]  S. Davies,et al.  Lipid zonation and phospholipid remodeling in nonalcoholic fatty liver disease , 2017, Hepatology.

[20]  P. Paci,et al.  Gut microbiota profiling of pediatric nonalcoholic fatty liver disease and obese patients unveiled by an integrated meta‐omics‐based approach , 2017, Hepatology.

[21]  R. Urtasun,et al.  Fibroblast growth factor 15/19 (FGF15/19) protects from diet-induced hepatic steatosis: development of an FGF19-based chimeric molecule to promote fatty liver regeneration , 2017, Gut.

[22]  P. Dawson,et al.  Bile acids and nonalcoholic fatty liver disease: Molecular insights and therapeutic perspectives , 2016, Hepatology.

[23]  J. Rabinowitz,et al.  Physiological Suppression of Lipotoxic Liver Damage by Complementary Actions of HDAC3 and SCAP/SREBP. , 2016, Cell metabolism.

[24]  Meric Erikci Ertunc,et al.  Lipid signaling and lipotoxicity in metaflammation: indications for metabolic disease pathogenesis and treatment , 2016, Journal of Lipid Research.

[25]  F. Anania,et al.  Loss of Junctional Adhesion Molecule A Promotes Severe Steatohepatitis in Mice on a Diet High in Saturated Fat, Fructose, and Cholesterol. , 2016, Gastroenterology.

[26]  P. Iozzo,et al.  Exenatide improves both hepatic and adipose tissue insulin resistance: A dynamic positron emission tomography study , 2016, Hepatology.

[27]  A. Gentilini,et al.  Molecular Pathogenesis of NASH , 2016, International journal of molecular sciences.

[28]  A. Sanyal,et al.  Suppression of IGF binding protein‐3 by palmitate promotes hepatic inflammatory responses , 2016, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[29]  A. Sanyal,et al.  Molecular mechanisms of lipotoxicity and glucotoxicity in nonalcoholic fatty liver disease. , 2016, Metabolism: clinical and experimental.

[30]  A. Gasbarrini,et al.  International Journal of Molecular Sciences the Metabolic Role of Gut Microbiota in the Development of Nonalcoholic Fatty Liver Disease and Cardiovascular Disease , 2022 .

[31]  Hanns-Ulrich Marschall,et al.  Intestinal Crosstalk between Bile Acids and Microbiota and Its Impact on Host Metabolism. , 2016, Cell metabolism.

[32]  A. Alisi,et al.  Pediatric NAFLD: the Future role of Patient-Tailored Probiotics Therapy. , 2016, Journal of pediatric gastroenterology and nutrition.

[33]  P. Angus,et al.  The role of the gut microbiota in NAFLD , 2016, Nature Reviews Gastroenterology &Hepatology.

[34]  A. Jaeschke,et al.  LRP1 Protein Deficiency Exacerbates Palmitate-induced Steatosis and Toxicity in Hepatocytes* , 2016, The Journal of Biological Chemistry.

[35]  J. Bajaj,et al.  Changes in the Intestinal Microbiome and Alcoholic and Nonalcoholic Liver Diseases: Causes or Effects? , 2016, Gastroenterology.

[36]  A. Diehl,et al.  Pathogenesis of Nonalcoholic Steatohepatitis. , 2016, Gastroenterology.

[37]  M. Nauck,et al.  The incretin effect in healthy individuals and those with type 2 diabetes: physiology, pathophysiology, and response to therapeutic interventions. , 2016, The lancet. Diabetes & endocrinology.

[38]  G. Gores,et al.  Lipotoxic lethal and sublethal stress signaling in hepatocytes: relevance to NASH pathogenesis[S] , 2016, Journal of Lipid Research.

[39]  H. Cortez‐Pinto,et al.  Diet, Microbiota, Obesity, and NAFLD: A Dangerous Quartet , 2016, International journal of molecular sciences.

[40]  G. Gores,et al.  Lipid-Induced Signaling Causes Release of Inflammatory Extracellular Vesicles From Hepatocytes. , 2016, Gastroenterology.

[41]  Lawrence A. David,et al.  The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota , 2016, Hepatology.

[42]  Rachel M. Brown,et al.  Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebo-controlled phase 2 study , 2016, The Lancet.

[43]  M. Trauner,et al.  Nuclear Receptor Modulation for the Treatment of Nonalcoholic Fatty Liver Disease , 2016, Seminars in Liver Disease.

[44]  G. Ioannou The Role of Cholesterol in the Pathogenesis of NASH , 2016, Trends in Endocrinology & Metabolism.

[45]  D. Erion,et al.  Hepatocyte-Specific Disruption of CD36 Attenuates Fatty Liver and Improves Insulin Sensitivity in HFD-Fed Mice. , 2016, Endocrinology.

[46]  S. Gough,et al.  Glucagon-like peptide 1 decreases lipotoxicity in non-alcoholic steatohepatitis , 2016, Journal of hepatology.

[47]  Frank Tacke,et al.  Immunology in the liver — from homeostasis to disease , 2016, Nature Reviews Gastroenterology &Hepatology.

[48]  F. Bäckhed,et al.  Microbiota-induced obesity requires farnesoid X receptor , 2016, Gut.

[49]  J. Auwerx,et al.  Eliciting the mitochondrial unfolded protein response by nicotinamide adenine dinucleotide repletion reverses fatty liver disease in mice , 2015, Hepatology.

[50]  William H. Bisson,et al.  Intestine-selective farnesoid X receptor inhibition improves obesity-related metabolic dysfunction , 2015, Nature Communications.

[51]  K. Bambha,et al.  Bile acid receptors and nonalcoholic fatty liver disease. , 2015, World journal of hepatology.

[52]  Patrice D. Cani,et al.  Crosstalk between Gut Microbiota and Dietary Lipids Aggravates WAT Inflammation through TLR Signaling , 2015, Cell metabolism.

[53]  James Kinross,et al.  The gut microbiota and host health: a new clinical frontier , 2015, Gut.

[54]  G. Szabo,et al.  Inflammasome activation in the liver: Focus on alcoholic and non-alcoholic steatohepatitis. , 2015, Clinics and research in hepatology and gastroenterology.

[55]  M. Johansson,et al.  The colonic mucus protection depends on the microbiota , 2015, Gut microbes.

[56]  Barbara M. Bakker,et al.  Protection against the Metabolic Syndrome by Guar Gum-Derived Short-Chain Fatty Acids Depends on Peroxisome Proliferator-Activated Receptor γ and Glucagon-Like Peptide-1 , 2015, PloS one.

[57]  R. Talukdar,et al.  Role of the normal gut microbiota. , 2015, World journal of gastroenterology.

[58]  J. McDonald,et al.  Targeted Induction of Ceramide Degradation Leads to Improved Systemic Metabolism and Reduced Hepatic Steatosis. , 2015, Cell metabolism.

[59]  A. Sanyal,et al.  Epidemiology and Natural History of Nonalcoholic Fatty Liver Disease , 2015, Seminars in Liver Disease.

[60]  Robert R. Henry,et al.  Type 2 diabetes mellitus , 2015, Nature Reviews Disease Primers.

[61]  Haitao Guo,et al.  Inflammasomes: mechanism of action, role in disease, and therapeutics , 2015, Nature Medicine.

[62]  J. Lancaster,et al.  Exenatide Regulates Cerebral Glucose Metabolism in Brain Areas Associated With Glucose Homeostasis and Reward System , 2015, Diabetes.

[63]  Mary E Rinella,et al.  Nonalcoholic fatty liver disease: a systematic review. , 2015, JAMA.

[64]  N. Kaplowitz,et al.  Sab (Sh3bp5) dependence of JNK mediated inhibition of mitochondrial respiration in palmitic acid induced hepatocyte lipotoxicity. , 2015, Journal of hepatology.

[65]  F. Bäckhed,et al.  Farnesoid X Receptor Inhibits Glucagon-Like Peptide-1 Production by Enteroendocrine L-cells , 2015, Nature Communications.

[66]  R. Urtasun,et al.  Ileal FGF15 contributes to fibrosis‐associated hepatocellular carcinoma development , 2015, International journal of cancer.

[67]  C. Trautwein,et al.  TRAIL receptor deletion in mice suppresses the inflammation of nutrient excess. , 2015, Journal of hepatology.

[68]  D. Nix,et al.  Potential role for snoRNAs in PKR activation during metabolic stress , 2015, Proceedings of the National Academy of Sciences.

[69]  D. D’Alessio,et al.  Physiology of proglucagon peptides: role of glucagon and GLP-1 in health and disease. , 2015, Physiological reviews.

[70]  L. Tailford,et al.  Mucin glycan foraging in the human gut microbiome , 2015, Front. Genet..

[71]  B. Neuschwander‐Tetri,et al.  Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial , 2015, The Lancet.

[72]  Xing Gao,et al.  Perilipin 5 improves hepatic lipotoxicity by inhibiting lipolysis , 2015, Hepatology.

[73]  Barbara M. Bakker,et al.  Short-Chain Fatty Acids Protect Against High-Fat Diet–Induced Obesity via a PPARγ-Dependent Switch From Lipogenesis to Fat Oxidation , 2015, Diabetes.

[74]  A. Wree,et al.  Arginase 2 deficiency results in spontaneous steatohepatitis: a novel link between innate immune activation and hepatic de novo lipogenesis. , 2015, Journal of hepatology.

[75]  I. Albert,et al.  Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease. , 2015, The Journal of clinical investigation.

[76]  S. K. Natarajan,et al.  Saturated free fatty acids induce cholangiocyte lipoapoptosis , 2014, Hepatology.

[77]  S. Summers,et al.  CerS2 haploinsufficiency inhibits β-oxidation and confers susceptibility to diet-induced steatohepatitis and insulin resistance. , 2014, Cell metabolism.

[78]  G. Iannelli,et al.  Oxysterols induce mitochondrial impairment and hepatocellular toxicity in non-alcoholic fatty liver disease. , 2014, Free radical biology & medicine.

[79]  O. Cummings,et al.  No significant effects of ethyl-eicosapentanoic acid on histologic features of nonalcoholic steatohepatitis in a phase 2 trial. , 2014, Gastroenterology.

[80]  F. Kuipers,et al.  Beyond intestinal soap—bile acids in metabolic control , 2014, Nature Reviews Endocrinology.

[81]  K. Petersen,et al.  The role of hepatic lipids in hepatic insulin resistance and type 2 diabetes , 2014, Nature.

[82]  G. Bedogni,et al.  Randomised clinical trial: the beneficial effects of VSL#3 in obese children with non‐alcoholic steatohepatitis , 2014, Alimentary pharmacology & therapeutics.

[83]  A. Wree,et al.  NLRP3 inflammasome activation is required for fibrosis development in NAFLD , 2014, Journal of Molecular Medicine.

[84]  G. Svegliati-Baroni,et al.  Dysbiosis contributes to fibrogenesis in the course of chronic liver injury in mice , 2014, Hepatology.

[85]  X. Wang,et al.  Degradation of Keap1 activates BH3-only proteins Bim and PUMA during hepatocyte lipoapoptosis , 2014, Cell Death and Differentiation.

[86]  V. Tremaroli,et al.  FXR is a molecular target for the effects of vertical sleeve gastrectomy , 2014, Nature.

[87]  David Artis,et al.  Intestinal epithelial cells: regulators of barrier function and immune homeostasis , 2014, Nature Reviews Immunology.

[88]  M. Trauner,et al.  Bile acid receptors as targets for drug development , 2014, Nature Reviews Gastroenterology &Hepatology.

[89]  J. Shayman,et al.  Ceramides and Glucosylceramides Are Independent Antagonists of Insulin Signaling* , 2013, The Journal of Biological Chemistry.

[90]  James B. Mitchell,et al.  Microbiome remodelling leads to inhibition of intestinal farnesoid X receptor signalling and decreased obesity , 2013, Nature Communications.

[91]  Barbara M. Bakker,et al.  The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism , 2013, Journal of Lipid Research.

[92]  D. Drucker,et al.  Pharmacology, physiology, and mechanisms of incretin hormone action. , 2013, Cell metabolism.

[93]  F. Bäckhed,et al.  The gut microbiota — masters of host development and physiology , 2013, Nature Reviews Microbiology.

[94]  Lixin Zhu,et al.  Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: A connection between endogenous alcohol and NASH , 2013, Hepatology.

[95]  G. Kroemer,et al.  Glycogen synthase kinase 3‐mediated voltage‐dependent anion channel phosphorylation controls outer mitochondrial membrane permeability during lipid accumulation , 2013, Hepatology.

[96]  F. Bäckhed,et al.  Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. , 2013, Cell metabolism.

[97]  E. Elinav,et al.  The intestinal microbiota in chronic liver disease. , 2013, Advances in immunology.

[98]  Peter E. Czabotar,et al.  Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy , 2013, Nature Reviews Molecular Cell Biology.

[99]  K. Clément,et al.  The importance of the gut microbiota after bariatric surgery , 2012, Nature Reviews Gastroenterology &Hepatology.

[100]  J. Kirwan,et al.  Role of ceramides in nonalcoholic fatty liver disease , 2012, Trends in Endocrinology & Metabolism.

[101]  S. Watkins,et al.  The role of endoplasmic reticulum in hepatic lipid homeostasis and stress signaling. , 2012, Cell metabolism.

[102]  P. Holt,et al.  A high-fat diet is associated with endotoxemia that originates from the gut. , 2012, Gastroenterology.

[103]  S. Friedman,et al.  Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues. , 2012, Gastroenterology.

[104]  R. Levine,et al.  A phase 2, randomized, double‐blind, placebo‐controlled study of GS‐9450 in subjects with nonalcoholic steatohepatitis , 2012, Hepatology.

[105]  Richard A. Flavell,et al.  Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity , 2012, Nature.

[106]  T. Hibi,et al.  A high-cholesterol diet exacerbates liver fibrosis in mice via accumulation of free cholesterol in hepatic stellate cells. , 2012, Gastroenterology.

[107]  R A Knight,et al.  Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012 , 2011, Cell Death and Differentiation.

[108]  E. Ferrannini,et al.  Direct effect of GLP-1 infusion on endogenous glucose production in humans , 2012, Diabetologia.

[109]  D. Sorescu,et al.  Glp-1 analog, liraglutide, ameliorates hepatic steatosis and cardiac hypertrophy in C57BL/6J mice fed a Western diet. , 2012, American journal of physiology. Gastrointestinal and liver physiology.

[110]  G. Wiens,et al.  Origin and evolution of TNF and TNF receptor superfamilies. , 2011, Developmental and comparative immunology.

[111]  B. Fromenty,et al.  Increased expression of cytochrome P450 2E1 in nonalcoholic fatty liver disease: mechanisms and pathophysiological role. , 2011, Clinics and research in hepatology and gastroenterology.

[112]  M. Vivarelli,et al.  Glucagon‐like peptide‐1 receptor activation stimulates hepatic lipid oxidation and restores hepatic signalling alteration induced by a high‐fat diet in nonalcoholic steatohepatitis , 2011, Liver international : official journal of the International Association for the Study of the Liver.

[113]  L. Joosten,et al.  Inflammasome is a central player in the induction of obesity and insulin resistance , 2011, Proceedings of the National Academy of Sciences.

[114]  A. Suzuki,et al.  Increased production of sonic hedgehog by ballooned hepatocytes , 2011, The Journal of pathology.

[115]  Richard A. Flavell,et al.  NLRP6 Inflammasome Regulates Colonic Microbial Ecology and Risk for Colitis , 2011, Cell.

[116]  S. Kliewer,et al.  FGF19 as a Postprandial, Insulin-Independent Activator of Hepatic Protein and Glycogen Synthesis , 2011, Science.

[117]  G. Gores,et al.  Hepatocyte death: a clear and present danger. , 2010, Physiological reviews.

[118]  B. Neuschwander‐Tetri,et al.  Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. , 2010, The New England journal of medicine.

[119]  F. Anania,et al.  Glucagon‐like peptide‐1 receptor is present on human hepatocytes and has a direct role in decreasing hepatic steatosis in vitro by modulating elements of the insulin signaling pathway , 2010, Hepatology.

[120]  G. Gores,et al.  Palmitoleate attenuates palmitate-induced Bim and PUMA up-regulation and hepatocyte lipoapoptosis. , 2010, Journal of hepatology.

[121]  M. Kastan,et al.  The NLRP3 inflammasome protects against loss of epithelial integrity and mortality during experimental colitis. , 2010, Immunity.

[122]  J. Dubé,et al.  Depletion of Liver Kupffer Cells Prevents the Development of Diet-Induced Hepatic Steatosis and Insulin Resistance , 2009, Diabetes.

[123]  K. Iwaisako,et al.  c-Jun N-terminal kinase-1 from hematopoietic cells mediates progression from hepatic steatosis to steatohepatitis and fibrosis in mice. , 2009, Gastroenterology.

[124]  A. Feldstein,et al.  Cytokeratin‐18 fragment levels as noninvasive biomarkers for nonalcoholic steatohepatitis: A multicenter validation study , 2009, Hepatology.

[125]  G. Gores,et al.  Mcl-1 Degradation during Hepatocyte Lipoapoptosis* , 2009, The Journal of Biological Chemistry.

[126]  J. Auwerx,et al.  TGR5-mediated bile acid sensing controls glucose homeostasis. , 2009, Cell metabolism.

[127]  G. Gores,et al.  JNK1-dependent PUMA Expression Contributes to Hepatocyte Lipoapoptosis* , 2009, The Journal of Biological Chemistry.

[128]  J. Kluwe,et al.  Toll-like receptors as targets in chronic liver diseases , 2009, Gut.

[129]  M. Czaja,et al.  Autophagy regulates lipid metabolism , 2009, Nature.

[130]  A. Feldstein,et al.  Hepatic Lipid Partitioning and Liver Damage in Nonalcoholic Fatty Liver Disease , 2009, Journal of Biological Chemistry.

[131]  Jason Chung,et al.  Endoplasmic reticulum stress plays a central role in development of leptin resistance. , 2009, Cell metabolism.

[132]  A. Neish,et al.  REVIEWS IN BASIC AND CLINICAL GASTROENTEROLOGY Microbes in Gastrointestinal Health and Disease , 2009 .

[133]  M. Katze,et al.  UPR pathways combine to prevent hepatic steatosis caused by ER stress-mediated suppression of transcriptional master regulators. , 2008, Developmental cell.

[134]  G. Gores,et al.  The lysosomal‐mitochondrial axis in free fatty acid–induced hepatic lipotoxicity , 2008, Hepatology.

[135]  Kun Wook Chung,et al.  Lysophosphatidylcholine as a death effector in the lipoapoptosis of hepatocytess⃞s⃞ The online version of this article (available at http://www.jlr.org) contains supplementary data in the form of three figures. Published, JLR Papers in Press, October 18, 2007. , 2008, Journal of Lipid Research.

[136]  P. Clavien,et al.  Omega 3 - Omega 6: What is right for the liver? , 2007, Journal of hepatology.

[137]  Michelle M Wiest,et al.  A lipidomic analysis of nonalcoholic fatty liver disease , 2007, Hepatology.

[138]  G. Gores,et al.  Free fatty acids sensitise hepatocytes to TRAIL mediated cytotoxicity , 2007, Gut.

[139]  P. Brubaker,et al.  Frontiers in glucagon-like peptide-2: multiple actions, multiple mediators. , 2007, American journal of physiology. Endocrinology and metabolism.

[140]  S. McCall,et al.  Inhibiting triglyceride synthesis improves hepatic steatosis but exacerbates liver damage and fibrosis in obese mice with nonalcoholic steatohepatitis , 2007, Hepatology.

[141]  E. Mardis,et al.  An obesity-associated gut microbiome with increased capacity for energy harvest , 2006, Nature.

[142]  J. Flier,et al.  TLR4 links innate immunity and fatty acid-induced insulin resistance. , 2006, The Journal of clinical investigation.

[143]  Afshin Samali,et al.  Mediators of endoplasmic reticulum stress‐induced apoptosis , 2006, EMBO reports.

[144]  G. Gores,et al.  Free Fatty Acids Induce JNK-dependent Hepatocyte Lipoapoptosis* , 2006, Journal of Biological Chemistry.

[145]  A. Yokota,et al.  Mechanism of Growth Inhibition by Free Bile Acids in Lactobacilli and Bifidobacteria , 2006, Journal of bacteriology.

[146]  J. Auwerx,et al.  Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation , 2006, Nature.

[147]  Timothy M Willson,et al.  Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[148]  F. Anania,et al.  Exendin‐4, a glucagon‐like protein‐1 (GLP‐1) receptor agonist, reverses hepatic steatosis in ob/ob mice , 2006, Hepatology.

[149]  S. Kliewer,et al.  Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. , 2005, Cell metabolism.

[150]  J. Jessurun,et al.  Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. , 2005, The Journal of clinical investigation.

[151]  R. Savkur,et al.  Regulation of pyruvate dehydrogenase kinase expression by the farnesoid X receptor. , 2005, Biochemical and biophysical research communications.

[152]  F. Bäckhed,et al.  Host-Bacterial Mutualism in the Human Intestine , 2005, Science.

[153]  H. Yamaguchi,et al.  CHOP Is Involved in Endoplasmic Reticulum Stress-induced Apoptosis by Enhancing DR5 Expression in Human Carcinoma Cells* , 2004, Journal of Biological Chemistry.

[154]  R. Soriano,et al.  Fibroblast growth factor 19 increases metabolic rate and reverses dietary and leptin-deficient diabetes. , 2004, Endocrinology.

[155]  Sander M Houten,et al.  Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. , 2004, The Journal of clinical investigation.

[156]  D. D’Alessio,et al.  Suppression of glucose production by GLP-1 independent of islet hormones: a novel extrapancreatic effect. , 2003, American journal of physiology. Endocrinology and metabolism.

[157]  B. Staels,et al.  Bile acids induce the expression of the human peroxisome proliferator-activated receptor alpha gene via activation of the farnesoid X receptor. , 2003, Molecular endocrinology.

[158]  S. Mitaku,et al.  Identification of G protein‐coupled receptor genes from the human genome sequence , 2002, FEBS letters.

[159]  G. Frantz,et al.  A mouse model of hepatocellular carcinoma: ectopic expression of fibroblast growth factor 19 in skeletal muscle of transgenic mice. , 2002, The American journal of pathology.

[160]  D. French,et al.  Printed in U.S.A. Copyright © 2002 by The Endocrine Society Transgenic Mice Expressing Human Fibroblast Growth Factor-19 Display Increased Metabolic Rate and Decreased Adiposity , 2022 .

[161]  S. Rhee,et al.  Saturated Fatty Acids, but Not Unsaturated Fatty Acids, Induce the Expression of Cyclooxygenase-2 Mediated through Toll-like Receptor 4* , 2001, The Journal of Biological Chemistry.

[162]  S. Akira,et al.  The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5 , 2001, Nature.