A product analog bound form of 3-oxoadipate-enol-lactonase (PcaD) reveals a multifunctional role for the divergent cap domain.

[1]  Tal Pupko,et al.  ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids , 2010, Nucleic Acids Res..

[2]  J. Schrag,et al.  Switching catalysis from hydrolysis to perhydrolysis in Pseudomonas fluorescens esterase. , 2010, Biochemistry.

[3]  M. Mathieu,et al.  Structural basis for human monoglyceride lipase inhibition. , 2010, Journal of molecular biology.

[4]  T. Begley,et al.  Structure determination and characterization of the vitamin B6 degradative enzyme (E)-2-(acetamidomethylene)succinate hydrolase. , 2010, Biochemistry.

[5]  P. Roversi,et al.  Structural basis for cofactor-independent dioxygenation of N-heteroaromatic compounds at the α/β-hydrolase fold , 2009, Proceedings of the National Academy of Sciences.

[6]  Robin L. Owen,et al.  Characterization of a Carbon-Carbon Hydrolase from Mycobacterium tuberculosis Involved in Cholesterol Metabolism* , 2009, The Journal of Biological Chemistry.

[7]  G. Amidon,et al.  Molecular Basis of Prodrug Activation by Human Valacyclovirase, an α-Amino Acid Ester Hydrolase* , 2008, Journal of Biological Chemistry.

[8]  Timothy D. Fenn,et al.  Crystal structures of the luciferase and green fluorescent protein from Renilla reniformis. , 2007, Journal of molecular biology.

[9]  Rodrigo Lopez,et al.  Clustal W and Clustal X version 2.0 , 2007, Bioinform..

[10]  K. Henrick,et al.  Inference of macromolecular assemblies from crystalline state. , 2007, Journal of molecular biology.

[11]  M. Kataoka,et al.  Microbial enzymes involved in lactone compound metabolism and their biotechnological applications , 2007, Applied Microbiology and Biotechnology.

[12]  F. Elmi,et al.  Stereoselective Esterase from Pseudomonas putida IFO12996 Reveals α/β Hydrolase Folds for d-β-Acetylthioisobutyric Acid Synthesis , 2005 .

[13]  Myung Hee Kim,et al.  The molecular structure and catalytic mechanism of a quorum-quenching N-acyl-L-homoserine lactone hydrolase. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[14]  G. Petsko,et al.  Three-dimensional structure of the quorum-quenching N-acyl homoserine lactone hydrolase from Bacillus thuringiensis. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[15]  D. Ollis,et al.  Following directed evolution with crystallography: structural changes observed in changing the substrate specificity of dienelactone hydrolase. , 2005, Acta crystallographica. Section D, Biological crystallography.

[16]  J. Cooper,et al.  The structure of the C-C bond hydrolase MhpC provides insights into its catalytic mechanism. , 2005, Journal of molecular biology.

[17]  Lian-Hui Zhang,et al.  Quorum sensing and quorum-quenching enzymes. , 2005, Journal of microbiology.

[18]  R. Ulrich,et al.  Role of quorum sensing in the pathogenicity of Burkholderia pseudomallei. , 2004, Journal of medical microbiology.

[19]  A. W. Schüttelkopf,et al.  PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. , 2004, Acta crystallographica. Section D, Biological crystallography.

[20]  Piero Fariselli,et al.  ConSeq: the identification of functionally and structurally important residues in protein sequences , 2004, Bioinform..

[21]  Hiroshi Habe,et al.  Crystal structure of a histidine-tagged serine hydrolase involved in the carbazole degradation (CarC enzyme). , 2003, Biochemical and biophysical research communications.

[22]  R. Huber,et al.  Structures of the tricorn‐interacting aminopeptidase F1 with different ligands explain its catalytic mechanism , 2002, The EMBO journal.

[23]  Masafumi Hidaka,et al.  Crystal structures of a meta‐cleavage product hydrolase from Pseudomonas fluorescens IP01 (CumD) complexed with cleavage products , 2002, Protein science : a publication of the Protein Society.

[24]  N. A. Whitehead,et al.  The regulation of virulence in phytopathogenic Erwinia species: quorum sensing, antibiotics and ecological considerations , 2002, Antonie van Leeuwenhoek.

[25]  S. Lewenza,et al.  Interspecies communication between Burkholderia cepacia and Pseudomonas aeruginosa. , 2002, Canadian journal of microbiology.

[26]  Jung-Kee Lee,et al.  Genes Encoding the N-Acyl Homoserine Lactone-Degrading Enzyme Are Widespread in Many Subspecies of Bacillus thuringiensis , 2002, Applied and Environmental Microbiology.

[27]  Michal Otyepka,et al.  Functionally relevant motions of haloalkane dehalogenases occur in the specificity‐modulating cap domains , 2002, Protein science : a publication of the Protein Society.

[28]  D. Ollis,et al.  Structure of the C123S mutant of dienelactone hydrolase (DLH) bound with the PMS moiety of the protease inhibitor phenylmethylsulfonyl fluoride (PMSF). , 2000, Acta crystallographica. Section D, Biological crystallography.

[29]  J. Newman,et al.  Crystal structure of the haloalkane dehalogenase from Sphingomonas paucimobilis UT26. , 2000, Biochemistry.

[30]  M. Holmquist,et al.  Alpha/Beta-hydrolase fold enzymes: structures, functions and mechanisms. , 2000, Current protein & peptide science.

[31]  J. Newman,et al.  Haloalkane dehalogenases: structure of a Rhodococcus enzyme. , 1999, Biochemistry.

[32]  J. Kingma,et al.  Specificity and Kinetics of Haloalkane Dehalogenase* , 1996, The Journal of Biological Chemistry.

[33]  D. Delneri,et al.  Degradation of trans-ferulic and p-coumaric acid by Acinetobacter calcoaceticus DSM 586. , 1995, Biochimica et biophysica acta.

[34]  P. Babbitt,et al.  On the origins and functions of the enzymes of the 4-chlorobenzoate to 4-hydroxybenzoate converting pathway , 1994, Biodegradation.

[35]  M. Schlömann,et al.  Evolution of chlorocatechol catabolic pathways , 1994, Biodegradation.

[36]  G. Kowalchuk,et al.  Contrasting patterns of evolutionary divergence within the Acinetobacter calcoaceticus pca operon. , 1994, Gene.

[37]  G. Kowalchuk,et al.  Unusual G + C content and codon usage in catIJF, a segment of the ben-cat supra-operonic cluster in the Acinetobacter calcoaceticus chromosome. , 1994, Gene.

[38]  G. Petsko,et al.  On the origin of enzymatic species. , 1993, Trends in biochemical sciences.

[39]  D. Ollis,et al.  Substrate-induced activation of dienelactone hydrolase: an enzyme with a naturally occurring Cys-His-Asp triad. , 1993, Protein engineering.

[40]  G. Ashley,et al.  Catalysis by dienelactone hydrolase: A variation on the protease mechanism , 1993, Proteins.

[41]  Joel L. Sussman,et al.  The α/β hydrolase fold , 1992 .

[42]  D. Parke,et al.  Regulation of phenolic catabolism in Rhizobium leguminosarum biovar trifolii , 1991, Journal of bacteriology.

[43]  M. Schlömann,et al.  Different types of dienelactone hydrolase in 4-fluorobenzoate-utilizing bacteria , 1990, Journal of bacteriology.

[44]  D. Ollis,et al.  Refined structure of dienelactone hydrolase at 1.8 A. , 1990, Journal of molecular biology.

[45]  D. Ollis,et al.  X-ray crystallographic structure of dienelactone hydrolase at 2.8 A. , 1988, Journal of molecular biology.

[46]  P. Williams,et al.  pWW174: A large plasmid from Acinetobacter calcoaceticus encoding benzene catabolism by the β‐ketoadipate pathway , 1987, Molecular microbiology.

[47]  D. Ollis,et al.  Crystallization and preliminary x-ray crystallographic data of dienelactone hydrolase from Pseudomonas sp. B13. , 1985, The Journal of biological chemistry.

[48]  N. Dunn,et al.  Evidence for a transmissible catabolic plasmid in Pseudomonas putida encoding the degradation of p-cresol via the protocatechuate ortho cleavage pathway. , 1978, Genetical research.

[49]  E. A. Barnsley Role and regulation of the ortho and meta pathways of catechol metabolism in pseudomonads metabolizing naphthalene and salicylate , 1976, Journal of bacteriology.

[50]  Cánovas Jl,et al.  Regulation of the enzymes of the beta-ketoadipate pathway in Moraxella calcoacetica. 1. General aspects. , 1967, European journal of biochemistry.

[51]  Ornston Ln The conversion of catechol and protocatechuate to beta-ketoadipate by Pseudomonas putida. II. Enzymes of the protocatechuate pathway. , 1966 .

[52]  T. Omori,et al.  Purification, characterization, and steady-state kinetics of a meta-cleavage compound hydrolase from Pseudomonas fluorescens IPO1. , 2002, Journal of bioscience and bioengineering.

[53]  W. Delano The PyMOL Molecular Graphics System , 2002 .

[54]  Caroline S. Harwood,et al.  THE β-KETOADIPATE PATHWAY AND THE BIOLOGY OF SELF-IDENTITY , 1996 .