Population-based prediction of subject-specific prostate deformation for MR-to-ultrasound image registration

Highlights • A novel framework for building population-predicted, subject-specific models of organ motion is presented.• Subject-specific PDFs are modelled without requiring knowledge of motion correspondence between training subjects.• A simple yet generalisable kernel regression scheme is employed.• A rigorous validation is presented using prostate MR-TRUS image registration data acquired on human patients.

[1]  P. Choyke,et al.  Real-time MRI-TRUS fusion for guidance of targeted prostate biopsies , 2008, Computer aided surgery : official journal of the International Society for Computer Aided Surgery.

[2]  Weixin Xie,et al.  Online 4-D CT Estimation for Patient-Specific Respiratory Motion Based on Real-Time Breathing Signals , 2010, MICCAI.

[3]  David J. Hawkes,et al.  Modelling Prostate Motion for Data Fusion During Image-Guided Interventions , 2011, IEEE Transactions on Medical Imaging.

[4]  Nassir Navab,et al.  Complete Valvular Heart Apparatus Model from 4D Cardiac CT , 2010, MICCAI.

[5]  Shyam Natarajan,et al.  MRI–ultrasound fusion for guidance of targeted prostate biopsy , 2013, Current opinion in urology.

[6]  Alejandro F Frangi,et al.  Automatic construction of 3-D statistical deformation models of the brain using nonrigid registration , 2003, IEEE Transactions on Medical Imaging.

[7]  Cristian Lorenz,et al.  Prediction Framework for Statistical Respiratory Motion Modeling , 2010, MICCAI.

[8]  Graeme P. Penney,et al.  Use of a CT statistical deformation model for multi-modal pelvic bone segmentation , 2008, SPIE Medical Imaging.

[9]  Kawal S. Rhode,et al.  Tissue deformation and shape models in image-guided interventions: a discussion paper , 2005, Medical Image Anal..

[10]  Lisa Tang,et al.  Simulation of Ground-Truth Validation Data Via Physically- and Statistically-Based Warps , 2008, MICCAI.

[11]  Heinz Handels,et al.  Statistical Modeling of 4D Respiratory Lung Motion Using Diffeomorphic Image Registration , 2011, IEEE Transactions on Medical Imaging.

[12]  Philippe C. Cattin,et al.  Model-guided respiratory organ motion prediction of the liver from 2D ultrasound , 2014, Medical Image Anal..

[13]  David J. Hawkes,et al.  Deformable Vessel-Based Registration Using Landmark-Guided Coherent Point Drift , 2010, MIAR.

[14]  Jonathon Shlens,et al.  A Tutorial on Principal Component Analysis , 2014, ArXiv.

[15]  Dean C. Barratt,et al.  Fully automated prostate magnetic resonance imaging and transrectal ultrasound fusion via a probabilistic registration metric , 2013, Medical Imaging.

[16]  Lawrence H. Staib,et al.  Physical model-based non-rigid registration incorporating statistical shape information , 2000, Medical Image Anal..

[17]  Martin Styner,et al.  Evaluation of 3D Correspondence Methods for Model Building , 2003, IPMI.

[18]  Yipeng Hu,et al.  A comparison of the accuracy of statistical models of prostate motion trained using data from biomechanical simulations. , 2010, Progress in biophysics and molecular biology.

[19]  Zeike A. Taylor,et al.  MR to ultrasound registration for image-guided prostate interventions , 2012, Medical Image Anal..

[20]  Timothy F. Cootes,et al.  Active Shape Models-Their Training and Application , 1995, Comput. Vis. Image Underst..

[21]  Andriy Myronenko,et al.  Point Set Registration: Coherent Point Drift , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  James S. Duncan,et al.  Bidirectional Segmentation of Three-Dimensional Cardiac MR Images Using a Subject-Specific Dynamical Model , 2008, MICCAI.

[23]  Heinz-Peter Schlemmer,et al.  Phantom study of a novel stereotactic prostate biopsy system integrating preinterventional magnetic resonance imaging and live ultrasonography fusion. , 2012, Journal of endourology.

[24]  David J. Hawkes,et al.  Respiratory motion models: a review. , 2013 .

[25]  Nico Karssemeijer,et al.  Biomechanical modeling constrained surface-based image registration for prostate MR guided TRUS biopsy. , 2015, Medical physics.

[26]  Ashutosh Kumar Singh,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2010 .

[27]  Lawrence H. Staib,et al.  Learning Nonrigid Deformations for Constrained Multi-modal Image Registration , 2013, MICCAI.

[28]  Daniel Rueckert,et al.  Construction of a 4D Statistical Atlas of the Cardiac Anatomy and Its Use in Classification , 2005, MICCAI.

[29]  Jasjit S. Suri,et al.  MRI-ultrasound registration for targeted prostate biopsy , 2009, 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[30]  Demetri Terzopoulos,et al.  Multilinear subspace analysis of image ensembles , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[31]  Aaron Fenster,et al.  Efficient Convex Optimization Approach to 3D Non-rigid MR-TRUS Registration , 2013, MICCAI.

[32]  T Schaeffter,et al.  Thoracic respiratory motion estimation from MRI using a statistical model and a 2-D image navigator , 2012, Medical Image Anal..

[33]  Fabrice Mériaudeau,et al.  Prostate multimodality image registration based on B-splines and quadrature local energy , 2012, International Journal of Computer Assisted Radiology and Surgery.

[34]  Hans-Peter Meinzer,et al.  Statistical shape models for 3D medical image segmentation: A review , 2009, Medical Image Anal..