FPGA-based architecture for real time segmentation and denoising of HD video

The identification of moving objects is a basic step in computer vision. The identification begins with the segmentation and is followed by a denoising phase. This paper proposes the FPGA hardware implementation of segmentation and denoising unit. The segmentation is conducted using the Gaussian mixture model (GMM), a probabilistic method for the segmentation of the background. The denoising is conducted implementing the morphological operators of erosion, dilation, opening and closing. The proposed circuit is optimized to perform real time processing of HD video sequences (1,920 × 1,080 @ 20 fps) when implemented on FPGA devices. The circuit uses an optimized fixed width representation of the data and implements high performance arithmetic circuits. The circuit is implemented on Xilinx and Altera FPGA. Implemented on xc5vlx50 Virtex5 FPGA, it can process 24 fps of an HD video using 1,179 Slice LUTs and 291 Slice Registers; the dynamic power dissipation is 0.46 mW/MHz. Implemented on EP2S15F484C3 StratixII, it provides a maximum working frequency of 44.03 MHz employing 5038 Logic Elements and 7,957 flip flop with a dynamic power dissipation of 4.03 mW/MHz.

[1]  Prasanth G. Rao,et al.  Moving Vehicle Identification using Background Registration Technique for Traffic Surveillance , 2008 .

[2]  Hamid Aghajan,et al.  Video-based freeway-monitoring system using recursive vehicle tracking , 1995, Electronic Imaging.

[3]  Larry S. Davis,et al.  W4: Real-Time Surveillance of People and Their Activities , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Marc Van Droogenbroeck,et al.  ViBe: A Universal Background Subtraction Algorithm for Video Sequences , 2011, IEEE Transactions on Image Processing.

[5]  Amine Bermak,et al.  An Efficient Digital VLSI Implementation of Gaussian Mixture Models-Based Classifier , 2006, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[6]  W. Eric L. Grimson,et al.  Learning Patterns of Activity Using Real-Time Tracking , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Fatih Murat Porikli,et al.  Achieving real-time object detection and tracking under extreme conditions , 2006, Journal of Real-Time Image Processing.

[8]  Song Zheng,et al.  An Improved Moving Object Detection Algorithm Based on Frame Difference and Edge Detection , 2007, Fourth International Conference on Image and Graphics (ICIG 2007).

[9]  Ákos Zarándy,et al.  Implementation of binary and gray-scale mathematical morphology on the CNN universal machine , 1996 .

[10]  Sándor Fejes,et al.  A data-driven algorithm and systolic architecture for image morphology , 1994, Proceedings of 1st International Conference on Image Processing.

[11]  E. Napoli,et al.  OpenCV compatible real time processor for background foreground identification , 2010, 2010 International Conference on Microelectronics.

[12]  Harvard Univer A Representation Theory for Morphological Image and Signal Processing , 1989 .

[13]  Lu Cheng,et al.  Moving object detection and recognition based on the frame difference algorithm and moment invariant features , 2008, 2008 27th Chinese Control Conference.

[14]  Michalis E. Zervakis,et al.  A survey of video processing techniques for traffic applications , 2003, Image Vis. Comput..

[15]  정연덕 R&D 활성화를 위한 국가과학기술종합정보서비스(NTIS:National Technology Information System) 활용 방안 , 2010 .

[16]  Viktor Öwall,et al.  An Embedded Real-Time Surveillance System: Implementation and Evaluation , 2008, J. Signal Process. Syst..

[17]  Guillaume-Alexandre Bilodeau,et al.  A Multiscale Region-Based Motion Detection and Background Subtraction Algorithm , 2010, Sensors.

[18]  Alex Pentland,et al.  Pfinder: real-time tracking of the human body , 1996, Proceedings of the Second International Conference on Automatic Face and Gesture Recognition.

[19]  M.P.T. Juvonen,et al.  Hardware Architectures for Adaptive Background Modelling , 2007, 2007 3rd Southern Conference on Programmable Logic.

[20]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[21]  Olaf Munkelt,et al.  Adaptive Background Estimation and Foreground Detection using Kalman-Filtering , 1995 .

[22]  M. Bayoumi,et al.  Real-time VLSI architecture for detection of moving object using Wronskian determinant , 2005, 48th Midwest Symposium on Circuits and Systems, 2005..

[23]  Abbes Amira,et al.  An Efficient FPGA Implementation of Gaussian Mixture Models-Based Classifier Using Distributed Arithmetic , 2006, 2006 13th IEEE International Conference on Electronics, Circuits and Systems.

[24]  Viktor Öwall,et al.  A Hardware Architecture for Real-Time Video Segmentation Utilizing Memory Reduction Techniques , 2009, IEEE Transactions on Circuits and Systems for Video Technology.

[25]  Ho Gi Jung,et al.  Mixture of Gaussians-Based Background Subtraction for Bayer-Pattern Image Sequences , 2011, IEEE Transactions on Circuits and Systems for Video Technology.

[26]  Theocharis Theocharides,et al.  A Flexible Parallel Hardware Architecture for AdaBoost-Based Real-Time Object Detection , 2011, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[27]  Kentaro Toyama,et al.  Wallflower: principles and practice of background maintenance , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[28]  Sun Han,et al.  A Practical Method for Moving Target Detection Under Complex Background , 2005 .

[29]  Soraia Raupp Musse,et al.  Background Subtraction and Shadow Detection in Grayscale Video Sequences , 2005, XVIII Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI'05).

[30]  Hugo Jiménez-Hernández,et al.  Temporal Templates for Detecting the Trajectories of Moving Vehicles , 2009, ACIVS.

[31]  W. Eric L. Grimson,et al.  Adaptive background mixture models for real-time tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[32]  Larry S. Davis,et al.  A fast background scene modeling and maintenance for outdoor surveillance , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[33]  Chih-Hsien Hsia,et al.  Hierarchical Method for Foreground Detection Using Codebook Model , 2011, IEEE Trans. Circuits Syst. Video Technol..

[34]  Liang-Gee Chen,et al.  Efficient moving object segmentation algorithm using background registration technique , 2002, IEEE Trans. Circuits Syst. Video Technol..

[35]  Zainab Abu Bakar,et al.  Noise removal and enhancement of binary images using morphological operations , 2008, 2008 International Symposium on Information Technology.

[36]  Viktor Öwall,et al.  Hardware accelerator design for video segmentation with multi-modal background modelling , 2005, 2005 IEEE International Symposium on Circuits and Systems.

[37]  Jen-Hui Chuang,et al.  Regularized Background Adaptation: A Novel Learning Rate Control Scheme for Gaussian Mixture Modeling , 2011, IEEE Transactions on Image Processing.

[38]  K. P. Karmann,et al.  Moving object recognition using an adaptive background memory , 1990 .

[39]  Anton Kummert,et al.  FPGA-based implementation of variable sized structuring elements for 2D binary morphological operations , 2002, Proceedings First IEEE International Workshop on Electronic Design, Test and Applications '2002.

[40]  Richard Bowden,et al.  A real time adaptive visual surveillance system for tracking low-resolution colour targets in dynamically changing scenes , 2003, Image Vis. Comput..

[41]  Constantin Vertan,et al.  Color morphology-like operators based on color geometric shape characteristics , 2003, Signals, Circuits and Systems, 2003. SCS 2003. International Symposium on.

[42]  Theodora A. Varvarigou,et al.  Fast Implementation of Binary Morphological Operations on Hardware-Efficient Systolic Architectures , 2000, J. VLSI Signal Process..