Fractional order control of unstable processes: the magnetic levitation study case

Although a considerable amount of research has been carried out in the field of fractional order controllers, the majority of the results deal with stable processes. Very little research has been reported regarding the design, analysis, and tuning of fractional order controllers for unstable processes. This paper proposes a methodology for designing and tuning fractional order controllers for a class of unstable second-order processes. The design is carried out using the stability analysis of fractional order systems, by means of Riemann surfaces and a proper mapping in the $$w{\text {-}}\hbox {plane}$$w-plane. The resulting fractional order controllers are implemented using graphical programming on industrial equipment and are validated experimentally using a laboratory scale magnetic levitation unit.

[1]  Zi-Jiang Yang,et al.  Adaptive robust nonlinear control of a magnetic levitation system , 2001, Autom..

[2]  Chin-Teng Lin,et al.  Nonlinear System Control Using Adaptive Neural Fuzzy Networks Based on a Modified Differential Evolution , 2009, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[3]  Faa-Jeng Lin,et al.  Hybrid controller with recurrent neural network for magnetic levitation system , 2005 .

[4]  Mir Behrad Khamesee,et al.  Nonlinear controller design for a magnetic levitation device , 2007 .

[5]  Bing-Gang Cao,et al.  Design of Fractional Order Controller Based on Particle Swarm Optimization , 2006 .

[6]  Inés Tejado,et al.  Auto-tuning of fractional order PI·D· controllers using a PLC , 2009, 2009 IEEE Conference on Emerging Technologies & Factory Automation.

[7]  R. Both,et al.  Fractional order models for a cryogenic separation column , 2010, 2010 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR).

[8]  Y. Chen,et al.  Tuning fractional order proportional integral controllers for fractional order systems , 2010 .

[9]  Lei Zhu,et al.  Modeling of Nonlaminated Electromagnetic Suspension Systems , 2010, IEEE/ASME Transactions on Mechatronics.

[10]  Alain Oustaloup,et al.  From fractal robustness to the CRONE control , 1999 .

[11]  A. Jalali,et al.  Stabilization of all-pole unstable delay systems by fractional-order [PI] and [PD] controllers , 2013 .

[12]  Frantisek Gazdos,et al.  Polynomial approach to control system design for a magnetic levitation system , 2007, 2007 European Control Conference (ECC).

[13]  Hsin-Jang Shieh,et al.  A robust optimal sliding‐mode control approach for magnetic levitation systems , 2010 .

[14]  George W. Irwin,et al.  The block regularised parameter estimator and its parallelisation , 1995, Autom..

[15]  Mohammad Saleh Tavazoei,et al.  Stabilization of Unstable Fixed Points of Chaotic Fractional Order Systems by a State Fractional PI Controller , 2008, Eur. J. Control.

[16]  Mohamed Darouach,et al.  Robust Fault Diagnosis with a Two-stage Kalman Estimator , 1997, Eur. J. Control.

[17]  Igor Podlubny,et al.  Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1999 .

[18]  Thomas E Marlin,et al.  Process Control , 1995 .

[19]  YangQuan Chen,et al.  Fractional-order systems and control : fundamentals and applications , 2010 .

[20]  Hamid Yaghoubi,et al.  The Most Important Maglev Applications , 2013 .

[21]  Tzuu-Hseng S. Li,et al.  Design of an EP-based fuzzy sliding-mode control for a magnetic ball suspension system , 2007 .

[22]  Enayatollah Taghavi Moghaddam,et al.  Sliding Mode Control of Magnetic Levitation Systems Using Hybrid Extended Kalman Filter , 2011 .

[23]  Zi-Jiang Yang,et al.  Adaptive robust output feedback control of a magnetic levitation system by k-filter approach , 2004, Proceedings of the 2004 IEEE International Symposium on Intelligent Control, 2004..

[24]  Y. Chen,et al.  A comparative introduction of four fractional order controllers , 2002, Proceedings of the 4th World Congress on Intelligent Control and Automation (Cat. No.02EX527).

[25]  I. Podlubny Fractional-order systems and PIλDμ-controllers , 1999, IEEE Trans. Autom. Control..

[26]  Andreas Kugi,et al.  A novel robust position estimator for self-sensing magnetic levitation systems based on least squares identification , 2011 .

[27]  I. Podlubny Fractional-Order Systems and -Controllers , 1999 .

[28]  YangQuan Chen,et al.  Fractional-order Systems and Controls , 2010 .

[29]  Luigi Fortuna,et al.  Fractional Order Systems: Modeling and Control Applications , 2010 .

[30]  Ahmed El Hajjaji,et al.  Modeling and nonlinear control of magnetic levitation systems , 2001, IEEE Trans. Ind. Electron..

[31]  Clara-Mihaela Ionescu,et al.  The Human Respiratory System: An Analysis of the Interplay between Anatomy, Structure, Breathing and Fractal Dynamics , 2013 .

[32]  Robin De Keyser,et al.  Robustness evaluation of fractional order control for varying time delay processes , 2012, Signal Image Video Process..

[33]  J.G. Lin,et al.  Structure-dependent magnetization in helimagnetic YMn/sub 2/O/sub 5/ , 2005, IEEE Transactions on Magnetics.

[34]  Syuan-Yi Chen,et al.  Direct decentralized neural control for nonlinear MIMO magnetic levitation system , 2009, Neurocomputing.

[35]  K. Moore,et al.  Discretization schemes for fractional-order differentiators and integrators , 2002 .