Effect of Cu6Sn5 nanoparticles addition on properties of Sn3.0Ag0.5Cu solder joints

[1]  Hao Wang,et al.  Novel Sn-0.7Cu composite solder reinforced with ultrafine nanoscale nickel particles/porous carbon , 2022, Materials Characterization.

[2]  Yong Xiao,et al.  Microstructure Transformation and Mechanical Properties of Al Alloy Joints Soldered with Ni-Cu Foam/ Sn-3.0ag-0.5cu (Sac305) Composite Solder , 2022, SSRN Electronic Journal.

[3]  Mu-lan Li,et al.  Microstructure and properties of Sn-Ag and Sn-Sb lead-free solders in electronics packaging: a review , 2021, Journal of Materials Science: Materials in Electronics.

[4]  Liang Zhang,et al.  Structure and properties of Sn-Cu lead-free solders in electronics packaging , 2019, Science and technology of advanced materials.

[5]  A. Zhang,et al.  On the mechanism of dendritic fragmentation by ultrasound induced cavitation. , 2019, Ultrasonics sonochemistry.

[6]  K. Suslick,et al.  The Chemical History of a Bubble. , 2018, Accounts of chemical research.

[7]  Michael G. Pecht,et al.  A review of lead-free solders for electronics applications , 2017, Microelectron. Reliab..

[8]  Wei Ke,et al.  Corrosion behavior of Sn-3.0Ag-0.5Cu lead-free solder joints , 2017, Microelectron. Reliab..

[9]  K. Nogita,et al.  Effects of Ni and TiO2 additions in as-reflowed and annealed Sn0.7Cu solders on Cu substrates , 2017 .

[10]  Dehong Xu,et al.  A Solution to Press-Pack Packaging of SiC MOSFETS , 2017, IEEE Transactions on Industrial Electronics.

[11]  Wen-Wei Shen,et al.  Three-Dimensional Integrated Circuit (3D IC) Key Technology: Through-Silicon Via (TSV) , 2017, Nanoscale Research Letters.

[12]  Y. Chan,et al.  Performance of Sn–3.0Ag–0.5Cu composite solder with TiC reinforcement: Physical properties, solderability and microstructural evolution under isothermal ageing , 2016 .

[13]  S. Y. Chang,et al.  Effects of nano-Al2O3 additions on microstructure development and hardness of Sn3.5Ag0.5Cu solder , 2010 .

[14]  C. Wei,et al.  Strengthening mechanism of SiC-particulate reinforced Sn–3.7Ag–0.9Zn lead-free solder , 2009 .

[15]  Makoto Motoyoshi,et al.  Through-Silicon Via (TSV) , 2009, Proceedings of the IEEE.

[16]  Katsuyuki Sakuma,et al.  3D chip-stacking technology with through-silicon vias and low-volume lead-free interconnections , 2008, IBM J. Res. Dev..

[17]  Zhiming Gao,et al.  Effect of the addition of In on the microstructural formation of Sn-Ag-Zn lead-free solder , 2008 .

[18]  Ping Liu,et al.  Effect of SiC Nanoparticle Additions on Microstructure and Microhardness of Sn-Ag-Cu Solder Alloy , 2008 .

[19]  K. Suganuma,et al.  Sn–Zn low temperature solder , 2006 .

[20]  Kojiro F. Kobayashi,et al.  Joint strength and interfacial microstructure between Sn–Ag–Cu and Sn–Zn–Bi solders and Cu substrate , 2004 .

[21]  L. Zhang,et al.  Materials modification of the lead-free solders incorporated with micro/nano-sized particles: A review , 2021 .

[22]  Rong An,et al.  Low-temperature-solderable intermetallic nanoparticles for 3D printable flexible electronics , 2019, Acta Materialia.

[23]  Robert C. Wolpert,et al.  A Review of the , 1985 .