Propene epoxidation over Au/Ti-SBA-15 catalysts

[1]  C. Louis,et al.  The effect of gold particle size on AuAu bond length and reactivity toward oxygen in supported catalysts , 2006 .

[2]  Bert M. Weckhuysen,et al.  The Production of Propene Oxide: Catalytic Processes and Recent Developments , 2006 .

[3]  T. Janssens,et al.  New method for analysis of nanoparticle geometry in supported fcc metal catalysts with scanning transmission electron microscopy. , 2006, The journal of physical chemistry. B.

[4]  S. Calvin,et al.  Comparison of extended x-ray absorption fine structure and Scherrer analysis of x-ray diffraction as methods for determining mean sizes of polydisperse nanoparticles , 2005 .

[5]  Tracy Q. Gardner,et al.  Modeling of kinetics and deactivation in the direct epoxidation of propene over gold–titania catalysts , 2005 .

[6]  B. Weckhuysen,et al.  Mechanistic study into the direct epoxidation of propene over gold/titania catalysts. , 2005, The journal of physical chemistry. B.

[7]  R. P. Andres,et al.  Direct vapor phase propylene epoxidation over deposition-precipitation gold-titania catalysts in the Presence of H2/O2: Effects of support, neutralizing agent, and pretreatment. , 2005, The journal of physical chemistry. B.

[8]  B. Weckhuysen,et al.  The role of gold in gold-titania epoxidation catalysts. , 2005, Angewandte Chemie.

[9]  X. Bao,et al.  Direct synthesis, characterization and catalytic activity of titanium-substituted SBA-15 mesoporous molecular sieves , 2004 .

[10]  J. Moulijn,et al.  Increasing the low propene epoxidation product yield of gold/titania-based catalysts , 2004 .

[11]  R. P. Andres,et al.  Reactivity and stability of Au in and on TS-1 for epoxidation of propylene with H2 and O2 , 2004 .

[12]  C. Petit,et al.  A new preparation method for the formation of gold nanoparticles on an oxide support , 2004 .

[13]  Masatake Haruta,et al.  Catalysis by Gold Nanoparticles: Epoxidation of Propene , 2004 .

[14]  T. Akita,et al.  Vapor-phase epoxidation of propylene using H2/O2 mixture over gold catalysts supported on non-porous and mesoporous titania-silica: effect of preparation conditions and pretreatments prior to reaction , 2004 .

[15]  M. Haruta,et al.  A three-dimensional mesoporous titanosilicate support for gold nanoparticles: vapor-phase epoxidation of propene with high conversion. , 2004, Angewandte Chemie.

[16]  Juergen Eckert,et al.  The nature of the surface species formed on Au/TiO2 during the reaction of H2 and O2: an inelastic neutron scattering study. , 2004, Journal of the American Chemical Society.

[17]  T. Akita,et al.  Effect of surface chemical properties and texture of mesoporous titanosilicates on direct vapor-phase epoxidation of propylene over Au catalysts at high reaction temperature , 2003 .

[18]  B. Su,et al.  Mono (V, Nb) or bimetallic (V–Ti, Nb–Ti) ions modified MCM-41 catalysts: synthesis, characterization and catalysis in oxidation of hydrocarbons (aromatics and alcohols) , 2003 .

[19]  T. Akita,et al.  Vapor phase propylene epoxidation over Au/Ti-MCM-41 catalysts prepared by different Ti incorporation modes , 2003 .

[20]  S. Kaliaguine,et al.  Mono- and bifunctional MFI, BEA and MCM-41 titanium-molecular sieves. Part 1. Synthesis and characterization , 2003 .

[21]  A. Neimark,et al.  Experimental Confirmation of Different Mechanisms of Evaporation from Ink-Bottle Type Pores: Equilibrium, Pore Blocking, and Cavitation , 2002 .

[22]  T. Akita,et al.  Vapor-Phase Epoxidation of Propene Using H2 and O2 over Au/Ti–MCM-48 , 2002 .

[23]  Alexander V. Neimark,et al.  A New Templated Ordered Structure with Combined Micro- and Mesopores and Internal Silica Nanocapsules , 2002 .

[24]  T. Tatsumi,et al.  Postsynthesis, Characterization, and Catalytic Properties in Alkene Epoxidation of Hydrothermally Stable Mesoporous Ti-SBA-15 , 2002 .

[25]  A. Hagen,et al.  The performance of Ti-MCM-41 in aqueous media and after mechanical treatment studied by in situ XANES, UV/Vis and test reactions , 2002 .

[26]  Masatake Haruta,et al.  Advances in the catalysis of Au nanoparticles , 2001 .

[27]  R. Nuzzo,et al.  A view from the inside: Complexity in the atomic scale ordering of supported metal nanoparticles , 2001 .

[28]  T. Akita,et al.  Epoxidation of propylene over gold catalysts supported on non-porous silica , 2001 .

[29]  T. Akita,et al.  Synthesis and characterization of Ti-MCM-41 and vapor-phase epoxidation of propylene using H2 and O2 over Au/Ti-MCM-41 , 2001 .

[30]  G. Sankar,et al.  The role of synchrotron-based studies in the elucidation and design of active sites in titanium-silica epoxidation catalysts. , 2001, Accounts of chemical research.

[31]  R. P. Andres,et al.  Characterization of Gold–Titania Catalysts via Oxidation of Propylene to Propylene Oxide , 2000 .

[32]  G. Stucky,et al.  Hydrothermal and postsynthesis surface modification of cubic, MCM-48, and ultralarge pore SBA-15 mesoporous silica with titanium , 2000 .

[33]  D. Zhao,et al.  Incorporation of Titanium into Mesoporous Silica Molecular Sieve SBA-15 , 1999 .

[34]  Toshio Hayashi,et al.  Vapor-Phase Selective Oxidation of Aliphatic Hydrocarbons over Gold Deposited on Mesoporous Titanium Silicates in the Co-Presence of Oxygen and Hydrogen , 1999 .

[35]  J. Moulijn,et al.  Direct Epoxidation of Propene Using Gold Dispersed on TS-1 and Other Titanium-Containing Supports , 1999 .

[36]  Toshio Hayashi,et al.  Selective Vapor-Phase Epoxidation of Propylene over Au/TiO2Catalysts in the Presence of Oxygen and Hydrogen , 1998 .

[37]  M. Bañares,et al.  Preparation and in-Situ Spectroscopic Characterization of Molecularly Dispersed Titanium Oxide on Silica , 1998 .

[38]  Bradley F. Chmelka,et al.  Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures , 1998 .

[39]  Fredrickson,et al.  Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores , 1998, Science.

[40]  Bernard Delmon,et al.  Low-Temperature Oxidation of CO over Gold Supported on TiO2, α-Fe2O3, and Co3O4 , 1993 .

[41]  Masatake Haruta,et al.  Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide , 1989 .

[42]  M. Comotti,et al.  Highly reproducible syntheses of active Au/TiO2 catalysts for CO oxidation by deposition-precipitation or impregnation , 2006 .

[43]  M. Haruta,et al.  Vapor-phase epoxidation of propene using H2 and O2 over Au/Ti-MCM-41 and Au/Ti-MCM-48 , 2000 .

[44]  Jacob A. Moulijn,et al.  Catalysis : an integrated approach , 1999 .

[45]  A. Miyamoto,et al.  Selective oxidation of propylene over gold deposited on titanium-based oxides , 1998 .

[46]  Y. Bando,et al.  Preparation of nanometer gold strongly interacted with TiO2 and the structure sensitivity in low-temperature oxidation of CO , 1995 .

[47]  W Gelletly Daresbury Laboratory , 1992 .

[48]  E. Barrett,et al.  (CONTRIBUTION FROM THE MULTIPLE FELLOWSHIP OF BAUGH AND SONS COMPANY, MELLOX INSTITUTE) The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms , 1951 .

[49]  R. Pierotti,et al.  International Union of Pure and Applied Chemistry Physical Chemistry Division Commission on Colloid and Surface Chemistry including Catalysis* Reporting Physisorption Data for Gas/solid Systems with Special Reference to the Determination of Surface Area and Porosity Reporting Physisorption Data for , 2022 .