FROM SYSTEM IDENTIFICATION TO PATH PLANNING USING FRACTIONAL APPROACH: A THERMAL APPLICATION EXAMPLE

This paper presents a global fractional approach from system identification to path planning; these results will be ap plied to a typical fractional application: a thermal diffusion in an aluminium rod. The objective is to follow a desired path using fractional linear flatness. However, models of true systems are not always known. Through a black box identification using a fractional model, the temperature versus the heat flux of an a luminium rod is modeled. The coosrivcf algorithm enables to optimize as well the parameter coefficients and the commensura te order. The fractional flat output generates the input comman d so that the system follows that desired path.

[1]  Alain Oustaloup,et al.  Flatness Control of a Fractional Thermal System , 2007 .

[2]  P. Young,et al.  Refined instrumental variable methods of recursive time-series analysis Part III. Extensions , 1980 .

[3]  A. Oustaloup,et al.  Extension de la platitude aux systèmes fractionnaires {MIMO} : application à un système thermique , 2008 .

[4]  Thierry Bastogne,et al.  Identification de modèles paramétriques à temps continu , 2007, Automatique et ingénierie système.

[5]  Alain Oustaloup,et al.  On a representation of fractional order systems: interests for the Initial Condition Problem , 2008 .

[6]  Hugues Garnier,et al.  An optimal instrumental variable method for continuous-time fractional model identification , 2008 .

[7]  Alain Oustaloup,et al.  Flatness control for linear fractional {MIMO} systems: thermal application , 2008 .

[8]  M. Fliess,et al.  Flatness and defect of non-linear systems: introductory theory and examples , 1995 .

[9]  T. Hartley,et al.  Initialization of Fractional-Order Operators and Fractional Differential Equations , 2008 .

[10]  D. Matignon Stability properties for generalized fractional differential systems , 1998 .

[11]  K. B. Oldham,et al.  The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .

[12]  Peter Young,et al.  Parameter estimation for continuous-time models - A survey , 1979, Autom..

[13]  Alain Oustaloup,et al.  Fractional system identification for lead acid battery state of charge estimation , 2006, Signal Process..

[14]  A. Oustaloup,et al.  Fractional Differentiation in Passive Vibration Control , 2002 .

[15]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[16]  Philippe Martin,et al.  A Lie-Backlund approach to equivalence and flatness of nonlinear systems , 1999, IEEE Trans. Autom. Control..

[17]  P. Young Optimal IV identification and estimation of continuous-time TF models , 2002 .

[18]  O. Agrawal,et al.  Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering , 2007 .

[19]  A. Oustaloup,et al.  Fractional state variable filter for system identification by fractional model , 2001, 2001 European Control Conference (ECC).

[20]  H. Akçay,et al.  Thermal modeling and identification of an aluminum rod using fractional calculus , 2009 .

[21]  Jean Lévine,et al.  Flat output characterization for linear systems using polynomial matrices , 2003, Syst. Control. Lett..

[22]  S. Rodrigues,et al.  A review of state-of-charge indication of batteries by means of a.c. impedance measurements , 2000 .

[23]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[24]  A. Oustaloup,et al.  Utilisation de modèles d'identification non entiers pour la résolution de problèmes inverses en conduction , 2000 .