UPV-28-UNITO at SemEval-2019 Task 7: Exploiting Post’s Nesting and Syntax Information for Rumor Stance Classification

In the present paper we describe the UPV-28-UNITO system’s submission to the RumorEval 2019 shared task. The approach we applied for addressing both the subtasks of the contest exploits both classical machine learning algorithms and word embeddings, and it is based on diverse groups of features: stylistic, lexical, emotional, sentiment, meta-structural and Twitter-based. A novel set of features that take advantage of the syntactic information in texts is moreover introduced in the paper.

[1]  Saif Mohammad,et al.  SemEval-2016 Task 6: Detecting Stance in Tweets , 2016, *SEMEVAL.

[2]  Dipankar Das,et al.  Enhanced SenticNet with Affective Labels for Concept-Based Opinion Mining , 2013, IEEE Intelligent Systems.

[3]  P. Resnick,et al.  RumorLens: A System for Analyzing the Impact of Rumors and Corrections in Social Media , 2014 .

[4]  Kalina Bontcheva,et al.  Simple Open Stance Classification for Rumour Analysis , 2017, RANLP.

[5]  Saif Mohammad,et al.  Stance and Sentiment in Tweets , 2016, ACM Trans. Internet Techn..

[6]  Paolo Rosso,et al.  Stance Detection in Fake News A Combined Feature Representation , 2018 .

[7]  Arkaitz Zubiaga,et al.  Towards Detecting Rumours in Social Media , 2015, AAAI Workshop: AI for Cities.

[8]  Bernd Carsten Stahl,et al.  Digital Wildfires: Propagation, Verification, Regulation, and Responsible Innovation , 2016, TOIS.

[9]  Viviana Patti,et al.  Hurtlex: A Multilingual Lexicon of Words to Hurt , 2018, CLiC-it.

[10]  Arkaitz Zubiaga,et al.  Detection and Resolution of Rumours in Social Media , 2017, ACM Comput. Surv..

[11]  R. Procter,et al.  Reading the riots on Twitter: methodological innovation for the analysis of big data , 2013 .

[12]  Hareesh Bahuleyan,et al.  UWaterloo at SemEval-2017 Task 8: Detecting Stance towards Rumours with Topic Independent Features , 2017, SemEval@ACL.

[13]  Dragomir R. Radev,et al.  Rumor has it: Identifying Misinformation in Microblogs , 2011, EMNLP.

[14]  Erik Cambria,et al.  SenticNet 3: A Common and Common-Sense Knowledge Base for Cognition-Driven Sentiment Analysis , 2014, AAAI.

[15]  Finn Årup Nielsen,et al.  A New ANEW: Evaluation of a Word List for Sentiment Analysis in Microblogs , 2011, #MSM.

[16]  Iryna Gurevych,et al.  A Retrospective Analysis of the Fake News Challenge Stance-Detection Task , 2018, COLING.

[17]  Andrea Esuli,et al.  SentiWordNet: A High-Coverage Lexical Resource for Opinion Mining , 2006 .

[18]  Pablo Gervás,et al.  SentiSense: An easily scalable concept-based affective lexicon for sentiment analysis , 2012, LREC.

[19]  Paolo Rosso,et al.  Overview of the Task on Stance and Gender Detection in Tweets on Catalan Independence , 2017, IberEval@SEPLN.

[20]  Harith Alani,et al.  Contextual semantics for sentiment analysis of Twitter , 2016, Inf. Process. Manag..

[21]  James W. Pennebaker,et al.  Linguistic Inquiry and Word Count (LIWC2007) , 2007 .

[22]  Jian Dong,et al.  Automatic Detection of Rumor on Social Network , 2015, NLPCC.

[23]  Peter D. Turney,et al.  Emotions Evoked by Common Words and Phrases: Using Mechanical Turk to Create an Emotion Lexicon , 2010, HLT-NAACL 2010.

[24]  Mike Thelwall,et al.  Sentiment in short strength detection informal text , 2010 .

[25]  Johan Bollen,et al.  Computational Fact Checking from Knowledge Networks , 2015, PloS one.

[26]  Manuel Montes-y-Gómez,et al.  Exploration of Misogyny in Spanish and English Tweets , 2018, IberEval@SEPLN.

[27]  Arkaitz Zubiaga,et al.  SemEval-2017 Task 8: RumourEval: Determining rumour veracity and support for rumours , 2017, *SEMEVAL.

[28]  G. Geethakumari,et al.  Detecting misinformation in online social networks using cognitive psychology , 2014, Human-centric Computing and Information Sciences.

[29]  Michael S. Bernstein,et al.  Empath: Understanding Topic Signals in Large-Scale Text , 2016, CHI.

[30]  Janyce Wiebe,et al.  +/-EffectWordNet: Sense-level Lexicon Acquisition for Opinion Inference , 2014, EMNLP.