A multivariate QD-like algorithm

The problem of constructing a univariate rational interpolant or Padé approximant for given data can be solved in various equivalent ways: one can compute the explicit solution of the system of interpolation or approximation conditions, or one can start a recursive algorithm, or one can obtain the rational function as the convergent of an interpolating or corresponding continued fraction.In case of multivariate functions general order systems of interpolation conditions for a multivariate rational interpolant and general order systems of approximation conditions for a multivariate Padé approximant were respectively solved in [6] and [9]. Equivalent recursive computation schemes were given in [3] for the rational interpolation case and in [5] for the Padé approximation case. At that moment we stated that the next step was to write the general order rational interpolants and Padé approximants as the convergent of a multivariate continued fraction so that the univariate equivalence of the three main defining techniques was also established for the multivariate case: algebraic relations, recurrence relations, continued fractions. In this paper a multivariate qd-like algorithm is developed that serves this purpose.