Identifying the region responsible for Brucella abortus MucR higher-order oligomer formation and examining its role in gene regulation

[1]  R. Fattorusso,et al.  MucR binds multiple target sites in the promoter of its own gene and is a heat‐stable protein: Is MucR a H‐NS‐like protein? , 2018, FEBS open bio.

[2]  A. Chambery,et al.  Ml proteins from Mesorhizobium loti and MucR from Brucella abortus: an AT-rich core DNA-target site and oligomerization ability , 2017, Scientific Reports.

[3]  Anisia J. Silva,et al.  H-NS: an overarching regulator of the Vibrio cholerae life cycle. , 2017, Research in microbiology.

[4]  M. Göttfert,et al.  The Sinorhizobium fredii HH103 MucR1 Global Regulator Is Connected With the nod Regulon and Is Required for Efficient Symbiosis With Lotus burttii and Glycine max cv. Williams. , 2016, Molecular plant-microbe interactions : MPMI.

[5]  Kamila Rachwał,et al.  The Regulatory Protein RosR Affects Rhizobium leguminosarum bv. trifolii Protein Profiles, Cell Surface Properties, and Symbiosis with Clover , 2016, Front. Microbiol..

[6]  L. Russo,et al.  The (unusual) aspartic acid in the metal coordination sphere of the prokaryotic zinc finger domain. , 2016, Journal of inorganic biochemistry.

[7]  Ziding Zhang,et al.  MucR Is Required for Transcriptional Activation of Conserved Ion Transporters to Support Nitrogen Fixation of Sinorhizobium fredii in Soybean Nodules. , 2016, Molecular plant-microbe interactions : MPMI.

[8]  C. Angelini,et al.  ZFP57 recognizes multiple and closely spaced sequence motif variants to maintain repressive epigenetic marks in mouse embryonic stem cells , 2015, Nucleic acids research.

[9]  C. Angelini,et al.  ZFP 57 recognizes multiple and closely spaced sequence motif variants to maintain repressive epigenetic marks in mouse embryonic stem cells , 2016 .

[10]  Kamila Rachwał,et al.  Transcriptome profiling of a Rhizobium leguminosarum bv. trifolii rosR mutant reveals the role of the transcriptional regulator RosR in motility, synthesis of cell-surface components, and other cellular processes , 2015, BMC Genomics.

[11]  L. Russo,et al.  The prokaryotic zinc‐finger: structure, function and comparison with the eukaryotic counterpart , 2015, The FEBS journal.

[12]  Jie Yan,et al.  H-NS Regulates Gene Expression and Compacts the Nucleoid: Insights from Single-Molecule Experiments. , 2015, Biophysical journal.

[13]  T. Hughes,et al.  A Novel AT-Rich DNA Recognition Mechanism for Bacterial Xenogeneic Silencer MvaT , 2015, PLoS pathogens.

[14]  L. Russo,et al.  Towards understanding the molecular recognition process in prokaryotic zinc-finger domain. , 2015, European journal of medicinal chemistry.

[15]  F. Fang,et al.  Integrated circuits: how transcriptional silencing and counter-silencing facilitate bacterial evolution. , 2015, Current opinion in microbiology.

[16]  G. Panis,et al.  Versatility of global transcriptional regulators in alpha-Proteobacteria: from essential cell cycle control to ancillary functions. , 2015, FEMS microbiology reviews.

[17]  A. Giuliodori,et al.  Time-resolved assembly of a nucleoprotein complex between Shigella flexneri virF promoter and its transcriptional repressor H-NS , 2014, Nucleic acids research.

[18]  L. Théraulaz,et al.  Cell cycle transition from S-phase to G1 in Caulobacter is mediated by ancestral virulence regulators , 2014, Nature Communications.

[19]  L. Russo,et al.  Molecular strategies to replace the structural metal site in the prokaryotic zinc finger domain. , 2014, Biochimica et biophysica acta.

[20]  D. Milardi,et al.  Deciphering the zinc coordination properties of the prokaryotic zinc finger domain: The solution structure characterization of Ros87 H42A functional mutant. , 2014, Journal of inorganic biochemistry.

[21]  D. Milardi,et al.  Zinc to cadmium replacement in the prokaryotic zinc-finger domain. , 2014, Metallomics : integrated biometal science.

[22]  Hao Dong,et al.  The effects of MucR on expression of type IV secretion system, quorum sensing system and stress responses in Brucella melitensis. , 2013, Veterinary microbiology.

[23]  N. Lartillot,et al.  An experimentally tested scenario for the structural evolution of eukaryotic Cys2His2 zinc fingers from eubacterial ros homologs. , 2013, Molecular biology and evolution.

[24]  M. Pons,et al.  Protein oligomers studied by solid‐state NMR – the case of the full‐length nucleoid‐associated protein histone‐like nucleoid structuring protein , 2013, The FEBS journal.

[25]  R. Roop,et al.  The ferrous iron transporter FtrABCD is required for the virulence of Brucella abortus 2308 in mice , 2013, Molecular microbiology.

[26]  G. Grimaldi,et al.  Genetic and epigenetic mutations affect the DNA binding capability of human ZFP57 in transient neonatal diabetes type 1 , 2013, FEBS letters.

[27]  D. Milardi,et al.  Structural Zn(II) implies a switch from fully cooperative to partly downhill folding in highly homologous proteins. , 2013, Journal of the American Chemical Society.

[28]  R. Roop,et al.  Diverse Genetic Regulon of the Virulence-Associated Transcriptional Regulator MucR in Brucella abortus 2308 , 2013, Infection and Immunity.

[29]  Á. Zorreguieta,et al.  BtaE, an Adhesin That Belongs to the Trimeric Autotransporter Family, Is Required for Full Virulence and Defines a Specific Adhesive Pole of Brucella suis , 2013, Infection and Immunity.

[30]  J. Letesson,et al.  Brucella melitensis MucR, an Orthologue of Sinorhizobium meliloti MucR, Is Involved in Resistance to Oxidative, Detergent, and Saline Stresses and Cell Envelope Modifications , 2012, Journal of bacteriology.

[31]  P. Bernadó,et al.  Structure of the DNA complex of the C-Terminal domain of Ler , 2011 .

[32]  C. Griesinger,et al.  Indirect DNA Readout by an H-NS Related Protein: Structure of the DNA Complex of the C-Terminal Domain of Ler , 2011, PLoS pathogens.

[33]  G. Arena,et al.  Zinc(II) complexes of ubiquitin: speciation, affinity and binding features. , 2011, Chemistry.

[34]  G. Splitter,et al.  Brucella melitensis Cyclic di-GMP Phosphodiesterase BpdA Controls Expression of Flagellar Genes , 2011, Journal of bacteriology.

[35]  Atina G. Coté,et al.  Structural basis for recognition of AT-rich DNA by unrelated xenogeneic silencing proteins , 2011, Proceedings of the National Academy of Sciences.

[36]  P. Contursi,et al.  C68 from the Sulfolobus islandicus plasmid-virus pSSVx is a novel member of the AbrB-like transcription factor family. , 2011, The Biochemical journal.

[37]  Juan E. González,et al.  Complex Regulation of Symbiotic Functions Is Coordinated by MucR and Quorum Sensing in Sinorhizobium meliloti , 2010, Journal of bacteriology.

[38]  M. Janczarek,et al.  Rhizobium leguminosarum bv. trifolii rosR is required for interaction with clover, biofilm formation and adaptation to the environment , 2010, BMC Microbiology.

[39]  S. Castang,et al.  High‐order oligomerization is required for the function of the H‐NS family member MvaT in Pseudomonas aeruginosa , 2010, Molecular microbiology.

[40]  John E. Ladbury,et al.  H-NS forms a superhelical protein scaffold for DNA condensation , 2010, Proceedings of the National Academy of Sciences.

[41]  L. Russo,et al.  NMR assignments of the DNA binding domain of Ml4 protein from Mesorhizobium loti , 2010, Biomolecular NMR assignments.

[42]  K. Kane,et al.  DNA bridging and antibridging: a role for bacterial nucleoid-associated proteins in regulating the expression of laterally acquired genes. , 2009, FEMS microbiology reviews.

[43]  Mario Renda,et al.  The structural role of the zinc ion can be dispensable in prokaryotic zinc-finger domains , 2009, Proceedings of the National Academy of Sciences.

[44]  K. Turner,et al.  H-NS family members function coordinately in an opportunistic pathogen , 2008, Proceedings of the National Academy of Sciences.

[45]  A. Becker,et al.  Sinorhizobium meliloti regulator MucR couples exopolysaccharide synthesis and motility. , 2008, Molecular plant-microbe interactions : MPMI.

[46]  A. Becker,et al.  Fine-Tuning of Galactoglucan Biosynthesis in Sinorhizobium meliloti by Differential WggR (ExpG)-, PhoB-, and MucR-Dependent Regulation of Two Promoters , 2008, Journal of bacteriology.

[47]  G. Splitter,et al.  Putative Quorum-Sensing Regulator BlxR of Brucella melitensis Regulates Virulence Factors Including the Type IV Secretion System and Flagella , 2008, Journal of bacteriology.

[48]  L. Russo,et al.  The prokaryotic Cys2His2 zinc-finger adopts a novel fold as revealed by the NMR structure of Agrobacterium tumefaciens Ros DNA-binding domain , 2007, Proceedings of the National Academy of Sciences.

[49]  M. Babu,et al.  High-affinity DNA binding sites for H-NS provide a molecular basis for selective silencing within proteobacterial genomes , 2007, Nucleic acids research.

[50]  M. Janczarek,et al.  The Rhizobium leguminosarum bv. trifolii RosR: transcriptional regulator involved in exopolysaccharide production. , 2007, Molecular plant-microbe interactions : MPMI.

[51]  F. Fang,et al.  Silencing of xenogeneic DNA by H-NS-facilitation of lateral gene transfer in bacteria by a defense system that recognizes foreign DNA. , 2007, Genes & development.

[52]  C. Dorman H-NS, the genome sentinel , 2007, Nature Reviews Microbiology.

[53]  Qingmin Wu,et al.  Mariner mutagenesis of Brucella melitensis reveals genes with previously uncharacterized roles in virulence and survival , 2006, BMC Microbiology.

[54]  L. Russo,et al.  A novel type of zinc finger DNA binding domain in the Agrobacterium tumefaciens transcriptional regulator Ros. , 2006, Biochemistry.

[55]  J. Hinton,et al.  H-NS Mediates the Silencing of Laterally Acquired Genes in Bacteria , 2006, PLoS pathogens.

[56]  Yipeng Wang,et al.  Selective Silencing of Foreign DNA with Low GC Content by the H-NS Protein in Salmonella , 2006, Science.

[57]  C. Gualerzi,et al.  Nature and mechanism of the in vivo oligomerization of nucleoid protein H‐NS , 2005, The EMBO journal.

[58]  C. Dorman H-NS: a universal regulator for a dynamic genome , 2004, Nature Reviews Microbiology.

[59]  P. Bertin,et al.  H-NS in Gram-negative bacteria: a family of multifaceted proteins. , 2003, Trends in microbiology.

[60]  E. Margeat,et al.  The H-NS dimerization domain defines a new fold contributing to DNA recognition , 2003, Nature Structural Biology.

[61]  C. Higgins,et al.  H-NS oligomerization domain structure reveals the mechanism for high order self-association of the intact protein. , 2002, Journal of molecular biology.

[62]  C. Higgins,et al.  Oligomerization of the chromatin‐structuring protein H‐NS , 2000, Molecular microbiology.

[63]  J. Handelsman,et al.  Identification of Genes in the RosR Regulon ofRhizobium etli , 2000, Journal of bacteriology.

[64]  C. Pon,et al.  Multimeric Self-assembly Equilibria Involving the Histone-like Protein H-NS , 2000, The Journal of Biological Chemistry.

[65]  C. Dobson,et al.  Hydrodynamic radii of native and denatured proteins measured by pulse field gradient NMR techniques. , 1999, Biochemistry.

[66]  D T Jones,et al.  Protein secondary structure prediction based on position-specific scoring matrices. , 1999, Journal of molecular biology.

[67]  C. Kado,et al.  Agrobacterium transcriptional regulator Ros is a prokaryotic zinc finger protein that regulates the plant oncogene ipt. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[68]  A. Pühler,et al.  The Sinorhizobium meliloti MucR protein, which is essential for the production of high-molecular-weight succinoglycan exopolysaccharide, binds to short DNA regions upstream of exoH and exoY , 1998, Molecular and General Genetics MGG.

[69]  A. Pühler,et al.  The regulatory protein MucR binds to a short DNA region located upstream of the muc R coding region in Rhizobium meliloti , 1997, Molecular and General Genetics MGG.

[70]  J. Handelsman,et al.  rosR, a determinant of nodulation competitiveness in Rhizobium etli. , 1997, Molecular plant-microbe interactions : MPMI.

[71]  T. Mizuno,et al.  Systematic mutational analysis revealing the functional domain organization of Escherichia coli nucleoid protein H-NS. , 1996, Journal of molecular biology.

[72]  K. Niehaus,et al.  Molecular analysis of the Rhizobium meliloti mucR gene regulating the biosynthesis of the exopolysaccharides succinoglycan and galactoglucan. , 1995, Molecular plant-microbe interactions : MPMI.

[73]  D. Ussery,et al.  The chromatin‐associated protein H‐NS alters DNA topology in vitro. , 1994, The EMBO journal.

[74]  C. Kado,et al.  Analysis of the Ros repressor of Agrobacterium virC and virD operons: molecular intercommunication between plasmid and chromosomal genes , 1993, Journal of bacteriology.

[75]  Charles S. Johnson,et al.  A PFG NMR experiment for accurate diffusion and flow studies in the presence of eddy currents , 1991 .

[76]  C. Kado,et al.  The virC and virD operons of the Agrobacterium Ti plasmid are regulated by the ros chromosomal gene: analysis of the cloned ros gene , 1991, Journal of bacteriology.

[77]  T. Close,et al.  Regulation of Ti plasmid virulence genes by a chromosomal locus of Agrobacterium tumefaciens , 1985, Journal of bacteriology.